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Abstract: The occurrence of complex potentials with real eigenvalues has implications concerning the 
inverse problem, i.e. the determination of a potential from its spectrum. First, any complex potential with real 
eigenvalues has at least one equivalent local potential. Secondly, a real spectrum does not necessarily 
corresponds to a local real potential. A basic ambiguity arises from the possibility the spectrum to be 
generated by a complex potential. The purpose of this work is to discuss several aspects of this problem. 
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INTRODUCTION 

 
At the end of the last century, the discovery of complex 
potentials having real eigenvalues originates from 
discussions in which D. Bessis took a key role (see the 
references of the paper by Bender and Boettcher [1]). It 
has produced a large amount of works. Many complex 
potentials with real eigenvalues are invariant under 
time reversal and parity transformation (PT invariance). 
However, this is neither a sufficient nor a necessary 
condition, and many examples have been found 
besides PT-invariant cases. 
A surview of this domain can be found in the review 
articles by Bender [2] and D. Mihalache [3]. In the 
present work, we study its implications in the inverse 
problem, i.e. in the determination of a potential from its 
spectrum. 
Here, we consider the Schro¨dinger equation in the D 
=1 dimensional space : 

 
 
The inverse problem consists in determining the 
potential from its observables. The most common 
practice is to use phase shifts from scattering data. 
Here we shall consider the determination of the 
potential from its spectrum {En}. Several cases are 
presented. 

 
 
 

THE LOCAL EQUIVALENT POTENTIAL. 
 
If a complex potential has only real eigenvalues, it 
possesses obviously at least 1 local equivalent 
potential. We shall display a couple of examples. 
The answer is analytical for a class of potentials 
including the Scarff II potential, the generalized Pochl-
Teller potential and the Morse potential. By using group 
theoretical techniques, it has been shown by Bagchi 
and Quesne [4] that their complexified versions 
generate real eigenvalues with equivalent spectra. 
The Morse potential  
 

 
 
has been further studied by Z. Ahmed [5]. By applying 
the change of variable 
 

 
in the Schrodinger equation, the effective parameter 
governing the eigenvalue is c +1/2. The eigenvalues 
are given by  

 
This spectrum can obviously be produced by a Poschl-
Teller potential 
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with σ = √c. 
An interesting case is provided us by the potential 
studied by Cannata et al [6] :  
 

 
 
Among the 2 analytic solutions found by the authors, 
we retained  
 

 
 
At large n, this spectrum approaches the one of the 
infinite well with opaque wall. Thus it suggests to 
simulate the local equivalent potential by a function 
with a sharp hedge at some distance, very much like a 
Woods-Saxon function. By using a limited number of 
parameters, we got satisfactory qualitative results with  
 

 
 
 
for U0 → ∞. The explicit form we obtained is given by 
 
 

 
 
And 
 

 
 
With 
 

 
 
Here, Θ(x) is the Heaviside function. 
 
The results are displayed in the fig 1. 
A more sophisticated, and more general method, relies 
on the connection between the excitation energies and 
the moments of the ground state density. For obvious 
reasons, the method can be applied if and only if the 
number of bound states is sufficiently large. A unique 
answer is obtained in the case of an infinite number of 
bound states, namely for confining potentials. More 

details concerning the procedure and its constraints 
can be found in the work by Yekken et al [7]. 
Here, use is made of 
 

 
 
 

 
 
Figure 1: Example of U(x) fitting the lowest 14 levels to 
better than 1 %. 
 
where f(n) has to be determined iteratively. Note that 
f(n) = 1 ∀ n in the case of the harmonic oscillator. 
The next difficulty consists in the reconstruction of | 
ψ0(x) |2 from its moments. It can be achieved by 
means of the Fourier transform of | ψ0(x) |2 and its 
approximate expansion via Pad´e approximants. 
Uniqueness of the answer : the ground state density 
being a positive definite function, the answer is unique 
if the number of known moments tends to infinity. In 
practice, a finite number of known moments results 
with uncertainties for the density requiring a statistical 
analysis. Knowing the lowest 12 - 15 levels yields 
already a reasonable answer. 
 
The ground state density provides us with the ground 
state wave function. The potential is obtained by 
reversing the Schrodinger equation. 
 

 
 
 
The method has been applied to 
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Its spectrum has been given by Bender and Boettcher 
[1]. Up to n = 4, the values have been obtained with the 
Runge-Kutta method. For larger n, the spectrum is well 
approximated by  
 

 
 
 
We found the local equivalent potential to be given by 
  
 

 
 
 
It approximates the exact spectrum to better than 0.1 
%, as illustrated in table 1. 
 
Table 1: Eigenvalues of U(x), Eq. (16), compared to the 
exact values of Bender and Boettcher [1]. 
 

 
 
A BASIC AMBIGUITY. 
 
Because of the existence of complex potential with real 
eigenvalues, the determination of the potential from its 
spectrum suffers from a basic ambiguity. From the 
above considerations, a real spectrum arises first from 
a local real potential. But the latter may admit complex 
partners with the same spectrum. Consequently, 
observables beyond the eigenvalues are needed to 
determine the potential and its nature, real or complex. 
We illustrate this situation in the following way. 
Consider an even potential given by  

 

 
The shift  
 

 
  
produces  
 
 

 
 
Such a potential is manifestly P T symmetric. Moreover 
: the Schrodinger equation is invariant under  
 

 
 
Thus formally, to the ensemble ψn(x) of solutions to 
U(x) corresponds the ensemble ψn(z) of solutions to V 
(x)+iW(x) with the same spectrum En up to a constant. 
The parameter c is not determined by the spectrum, so 
that the transformation (18) generates an infinity of 
complex partners with identical spectrum. 
We shall illustrate this situation by 2 examples. First, let 
us look at the shifted harmonic oscillator introduced 
years ago by Znojil [8]. 
 

 
 
It is a simple matter to verify that its spectrum 
corresponds to the ordinary harmonic oscillator 
spectrum shifted by α2c2/ 4 , and its wave functions are 
those of the usual H.O. in terms of z. 
Looking for a simple observable able to fix the value of 
c, we have checked the dipole transition between the 
ground and first excited state. Before presenting the 
results, it is important to recall that in the case of non-
Hermitian systems, the necessary conditions to 
generate a coherent quantum mechanics imply the 
definition of the scalar product and the observables. 
In brief, we have to ensure the positivity of the norms 
and to get rid of incoherent statements. For instance, 
the average value of a positive definite operator must 
be positive definite. 
This problem does not admit a simple general form, but 
has to be solved for each potential. In general, the 
proper definition is given by  
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where P and T, are the parity and time reversal 
operators. To be an observable A must satisfy  
 
 

 
For the shifted potential, the operator C has been 
derived by Ahmed [9] : 
 

 
 
In particular, it yields 
 
 

 
Back to the harmonic oscillator case Eq. (20), the 
ground and first excited state wave functions are given 
by  
 

 
 
and  
 
 

 
 
 
respectively. Furthermore, the spectrum is given by 
 

 
 
With these elements, two kind of results can be 
established. 
First, the equivalent of the x2 average on the ground 
state  
 

 
 
Thus the result is independent on c. For the higher 
ground state moments, use can be made of the 
recurrent relationship 
 

 
 
 

As a consequence, all the ground state even moments 
are independent on c. 
A similar result can be obtained for the odd moments. 
Indeed we have 
 

 
here with k ≥ 1. Moreover, because for k = 1 the 
ground state average is zero, all the odd ground state 
moments are zero. 
Consider the dipole transition operator  
 
the contribution of the lowest excited state is given by 
 

 
 
It is easy to check that the lowest excited state is 
exhausting the dipole sum rule :  
 

 
 
which is actually a property of the harmonic oscillator. 
In other words, we conclude that for the harmonic 
oscillator the shift of the coordinate by      has little if no 
impact on the physics, and thus is irrelevant. 

 
 A CONJECTURE. 
 
It is very tempting to state that for any PT symmetric 
shifted potential the spectrum and the observables 
based on the ground state moments do not depend on 
the complex shift. However, this conjecture is simply 
based on the formal change affecting the Schrodinger 
equation under the change of variable. The positive 
illustrating example may essentially reflect the very 
special properties of the harmonic oscillator. 
Consequently the confirmation or the rejection of this 
conjecture require more effort. Here we shall pursue 
the discussion by investigating a second example. 
Let us consider the Poschl-Teller potential : 
 

 
 
with its spectrum 
 

 
 
The shifted potential reads 
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This potential is obviously P T symmetric. Because of 
the cyclic character of the coefficients multiplying the 
hyperbolic function, it is sufficient to consider 0 ≤ c < π 
The formal derivation in terms of the z variable should 
be valid ∀c in this domain. However, take the upper 
limit c = π, it reduces to 
 

 
 
which has no bound state ! 
To get more insight, consider the case σ = 1, for which 
a single bound state exists with E0 = −1. The wave 
function reads 
 

 
 
It is a simple matter to verify that for c = π, this wave 
function reduces to 
 

 
 
 
It satisfies the Schrodinger equation with above 
mentioned eigenvalue. However, because of its 
singularity at the origin, this wave function is not square 
integrable and thus has to be rejected from the Hilbert 
space. 
 
On the other hand, if we calculate the norm and the 
average value of                   
 
the results are stable, equal to their values at c = 0 until 
the vicinity of the singularity is reached. Note that these 
results are obtained by numerical integrations, which 
are very sensitive to the integration mesh size as the 
singularity is approached. To be specific, with a mesh 
of 10−3, the results deviate from the c = 0. values at      
c = 3.131 to a 10−10 level, the limit c = 3.1405 is 
reached with a mesh of 10−4, and c = 3.14150 with a 
mesh of 10−5. 
 
 
Actually, by expanding the wave function for c = π−ǫ, 
we obtain 
 

 
 
 

It indicates        divergence. 
These results suggest the above conjecture to be true 
for all c values for which the wave function is 
normalizable. 
 

 
CONCLUSIONS. 

 
In this work, we are dealing with complex potentials 
having real eigenvalues. Such potential admit a real 
local equivalent potential, which is more or less 
obvious. Some examples of the determination of real 
local equivalent potentials have been given. 
More interesting is the fact that any real even potential 
possesses an infinite number of complex partners, by a 
simple complex change of coordinate like x → x + ic 2. 
This change leaving the Schrodinger equation 
unchanged, the spectrum is the same, independently 
of c. The 2 studied examples indicate that actually the 
values of other observables are unchanged. A point to 
be studied more thoroughly. 
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