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Abstract: Universal laws are notoriously hard to discover in the social sciences, but there is one which can be 
stated with a fair degree of confidence: “all students hate statistics”. Students in the social sciences often need 
to learn basic statistics as part of a research methods module, and anyone who has ever been responsible for 
teaching statistics to these students will soon discover that they find it to be the hardest and least popular part 
of any social science syllabus.  
 
A typical problem for students is the use of Fisher’s F-test as a significance test, which even in the simple case 
of a one-factor analysis of variance (ANOVA) presents difficulties. These are two in number. Firstly, the test is 
presented as a test of the null hypothesis, that is, that there is no effect of one variable (the independent variable, 
IV) on the other, dependent variable (DV). This highlights the opposite of what one generally wants to prove, 
the experimental hypothesis, which is usually that there is an effect of the IV on the DV. Students, if they think 
about the question at all, may be tempted to ask “why not try to prove the experimental hypothesis directly 
rather than using this back-to-front approach?” 
 
Secondly, the F-ratio itself is presented in the form of an algebraic manipulation, involving the ratio of two mean 
sums of squares, and these means are themselves moderately complicated to understand. Even students 
specializing in mathematics often find algebra difficult, and to non-mathematicians this formula is simply baffling. 
Instructors do not usually make a serious attempt to remedy this confusion by attempting to explain what the 
F-ratio is attempting to measure, and when they do, the explanation is not usually very enlightening. Students 
may struggle with the statement that the F-ratio is the ratio of “two different estimates of the variance of the 
population being sampled from, under the null hypothesis”. So what?  
 
The result is that students frequently end up applying statistical analysis programs such as SPSS and R, without 
having the faintest understanding of how the mathematics works. They use the results in a mechanical way, 
according to a procedure learned by rote memory, and may overlook different tests which might be more 
appropriate for their data. This might be called the cookbook approach to data analysis, and it is the opposite 
of the ultimate aim of high quality teaching, which is to provide a deep understanding of principles, which will 
allow the student to use these principles flexibly in real life challenges, without violating the assumptions of the 
statistical tests being employed. 
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INTRODUCTION 
 
In attempting to make the F-test more comprehensible, 
I have developed a visual method of presenting the F-
ratio, which motivates its use and in addition, provides 
a concrete realization of a fundamental philosophical 
principle behind all research methodology in science, 
namely Occam’s Razor or the Principle of Parsimony. 
The full explanation of why it works is available at Allen 
(2018), but the aim of the present paper is to 
summarize the principles on which it works, and 
provide an incentive for instructors (and students) to 
adopt a different approach. The method is the outcome 
of teaching statistics for eight years to psychology 
masters students, during which time it evolved 
gradually, largely as a result of feedback and questions 
from those students. The first step was a realization 
that the F-ratio test can be seen in a natural way not as 
a test of null hypothesis on its own, but as a 
comparison of two hypotheses, namely the null and 
experimental hypotheses.  
 
R. A. Fisher, who was the father of null hypothesis 
significance testing, maintained aggressively to the end 
of his life that his method worked by examining 
exclusively the null hypothesis. It is therefore ironic that 
his method can be better understood, in my opinion, in 
the context of comparison of two hypotheses. In fact, it 
turns out that even this is not quite correct: it is actually 
a model comparison test. And model comparison is the 
fundamental method used today in both Neyman-
Pearson statistics and Bayesian techniques. 
Approaching the F-test via the model comparison route 
therefore prepares students mentally in case they ever 
need to move on to these two more recent 
developments.  
 
The second step was to appreciate that the actual 
value of the F-ratio could be seen in terms of the ratio 
of the slopes of two straight lines in a fairly simple 
diagram. The diagram includes a third line, which I 
have named the Occam line in honor of the discoverer 
of Occam’s principle, and which provides a quite 
specific example of the fundamental role played by this 
principle in the F-test itself.  
 

HOW THE PROCEDURE WORKS 
 
Taking a specific example, consider the following very 
simple set of data comprising an independent variable 
consisting of three groups, where the values of the 
dependent variable are 1, 2, 3 for the first group, 4, 5, 
6 for the second group and 7, 8, 9 for the third group. 
The groups could represent three drug treatments, and 
the numbers, a measure of clinical outcome for each of 
nine participants. One might represent this set of data 
as a row vector thus: (1, 2, 3, 4, 5, 6, 7, 8, 9). 

 
The first step with ANOVA is to calculate the so-called 
“total sum of squares” for these data, which is defined 
as the sum of squared deviations of the data points 
from the overall mean. Here, the mean is 5, and the 
sum of squared deviations from it is   16 + 9 + 4 + 1 + 
0 + 1 + 4 + 9 + 16, or 60. This total is then partitioned 
into two quantities, the “within groups” and “between 
groups” sums of squares. The within groups sum of 
squares is found by taking the squared deviations 
within each group from the mean for that group, and 
adding these. In this instance each group contributes 2 
to the sum, making a total over the three groups of 6. 
The between groups sum of squares is defined as 
what is left over when this sum of squares is 
subtracted from the total sum of squares, namely 54.  
 
From these sums of squares, two “mean squares” are 
now calculated. The within groups mean square (MSW) 
is found by dividing the within groups sum of squares 
by the within groups degrees of freedom, which is 
equal to the total number of data points reduced by the 
number of groups, or 6 with this dataset. The between 
groups mean square (MSB)  is found by dividing the 
between groups sum of squares by the between 
groups degrees of freedom, which is equal to the 
number of groups reduced by one, in this case 2. 
Finally, Fisher’s F is found as the ratio (MSB)/(MSW). 
The output of such a calculation for the example given 
above is shown in Table 1. I will ignore the 
“significance” value of .001 as it is not strictly relevant 
to the present discussion. 
 
Table 1: Output of ANOVA calculation for the example 

ANOVA 

Score   

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Between 

Groups 

54.000 2 27.000 27.000 .001 

Within 

Groups 

6.000 6 1.000 
  

Total 60.000 8    

 

THE PROCEDURE IN GENERAL 
  
Consider the example of a one-way ANOVA, with the 
independent variable comprising k separate groups 
and having a total sample size of N. The procedure 
can be extended to multifactorial ANOVA, and indeed 
to repeated measures ANOVA, but to illustrate the 
basic principle this will suffice. A model is defined as 
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an approximation to the actual data, which involves 
assigning a value to each sample point, determined by 
the model. A standard measure of how far a model 
departs from the data, is given by the lack-of-fit sum of 
squares (which I abbreviate to lofsos); this is the sum 
of the squared differences between the actual value of 
the dependent variable and the value for that data 
point predicted by the model, taken over the whole 
sample.  

 

The null hypothesis states that the groups are all 
drawn randomly from the same population. 
Corresponding to this hypothesis are a whole 
continuum of possible models, each consistent with 
the hypothesis. Each of these models approximates 
all the data points by a single number, which is called 
the parameter representing that model. It is well 
known that out of all such models, the one which fits 
the data most closely by the lofsos criterion is the 
model whose parameter is the mean of all the sample 
data: call it the null model. 
 
In the case of the earlier example, the null model will 
approximate all the values of the dependent variable by 
the grand mean of 5. One could represent it as a row 
vector thus: (5, 5, 5, 5, 5, 5, 5, 5, 5). It can be seen by 
examining the definitions that the lofsos of the null 
model is identical to the “total sum of squares” as 
defined earlier.   

 

Typically, a between-subjects design will be used to 
test a causal hypothesis, claiming an effect of the 
differing treatments represented by the various groups 
on the dependent variable. In its most basic form, the 
causal hypothesis is the logical contrary to the null 
hypothesis: it states that the population means from 
which the groups are sampled are not all equal. The 
causal hypothesis is, as with the null hypothesis, also 
compatible with many different models but as before, 
there is a unique causal model that best fits the data. 
That model is the one which approximates every data 
point by the mean of the group to which it belongs, (this 
group mean being the best estimate of the 
corresponding population mean).  
 
In the previous example, the causal model will 
represent all members of each group by that group 
mean, which appears in row vector form as (2, 2, 2, 5, 
5, 5, 8, 8, 8), having three parameters. The lofsos of 
the causal model is, from the definition, the same as 
the within group sum of squares. In the general case 
where there are k separate groups the causal model 
has k parameters, one for each group, each parameter 
being equal to its group mean.  
 
I now have to introduce one final model: the saturated 
model, which approximates the dataset by itself. The 

saturated model can be represented by the same row 
vector as the original set of data: in the previous case, 
(1, 2, 3, 4, 5, 6, 7, 8, 9). Since each value of this vector 
is given by the data, there are in general N numbers 
required to specify the model: it has N parameters. The 
lofsos of the saturated model is evidently zero. The 
point of the saturated model will appear presently.  
 
In Figure 1, I have plotted these three models derived 

from the example, with lofsos on the vertical axis and 

the number of parameters on the horizontal axis. The 

figure includes vertical lines indicating the size of the 

total sum of squares (the lofsos of the null model: 60), 

within groups sum of squares (the lofsos of the causal 

model: 6) and the between groups sum of squares 

(54), as well as the between groups degrees of 

freedom (2) and within groups degrees of freedom (6).   

 

 

Figure 1: null, causal and saturated models plotted on 
a lofsos-parameter diagram, with mean squares, sums 
of squares and degrees of freedom indicated 
 

Given the definitions of the mean squares as the ratio 
between the appropriate sum of squares to the 
appropriate degrees of freedom, it is clear that MSB is 
the gradient of the line joining the null and causal 
models, and MSW is the gradient of the line connecting 
the causal and saturated models (the point of the 
saturated model should now be clear: it was needed so 
that both these statistics could be represented on the 
same diagram). Fisher’s F-ratio appears as the ratio of 
these two gradients.  
 
It is evident from this diagram that the causal model 
for our example lies below the line joining the null and 
saturated models. A moment’s thought will confirm 
that this will be the case when, and only when, the 
gradient MSB is steeper than the gradient MSW. This 
condition is clearly equivalent to the statement that 
MSB/MSW > 1. It follows that the plot of the causal 
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model lies below the line joining the null and the 
saturated models in the lofsos-parameter diagram if, 
and only if, Fisher’s F is greater than one. 
 
Figure 2 below gives the diagram for another dataset; 

this time I have included the Occam Line. The key 

point is that the point representing the causal model 

(corresponding to the experimental hypothesis) plots 

well below the Occam Line. Of course, a statistical test 

is needed to show if it is “far enough” below the line: 

this is provided by the F-ratio test. The F-ratio is the 

ratio of the slopes of (1) the line joining the null and 

causal models and (2) the line joining the causal and 

saturated models. 

 

 
 
Figure 2: the lofsos-parameter diagram, showing the 
three models under comparison and the Occam Line 
 

INFORMAL JUSTIFICATION 
  
Why should this be “significant”, in the non-statistical 
sense of the word? The null and saturated models are 
both lacking in interest, in terms of what they tell us 
about the data. The null model fails to distinguish in 
any way between the data points, and so does not tell 
us whether (or in what direction) any one of the group 
means differs from any of the others. The saturated 
model is equally unhelpful, but in the opposite 
direction. A model which uses the data to represent 
themselves has perfect fit, but at the expense of 
lacking any predictive validity. 

 

This suggests that the line joining the null and 
saturated models might represent the point plots of all 
models which share, with the models at both 
extremities of the line, the property of being without 
value in terms of conveying useful information about 
the underlying structure of the data. In fact it can be 
shown that this line represents something quite 
concrete. Taking the example in the diagram in Figure 
1, there are 9 sample points. Consider a model with 
three parameters. The line joining the null and 

saturated models has a slope of 60/8 or 7.5, so the 
point on this line vertically above the three parameter 
mark, which is two parameter units to the right of the 
plot of the null model, is at a vertical lofsos value of 60 
– 2 x 7.5 or 45. Now suppose that I take all possible 
ways of dividing the original dataset into three groups, 
and for each such combination, I calculate the lofsos 
for that model, in which the data are approximated by 
the group means. Then the grand average of the lofsos 
values for all these combinations will be precisely 45. 

 

This result is quite general (a proof is given in Allen, 
2018). This means that the line joining the null and 
saturated models represents, for each value of 
parameter on the horizontal axis, a lofsos value that 
would be obtained on average by choosing 
appropriate numbers of subgroups of the dataset 
totally at random and calculating the corresponding 
models. Clearly, a prospective model should fit the 
data better than this – in other words, it should plot 
below this line – if it is to improve on the average 
performance of a model obtained in this random 
manner, and so to have any merit. 
 
The null model-saturated model line slopes 
downwards to the right, meaning that the more 
complex models, with higher parameter values, have 
(as their complexity increases) a more severe 
threshold to overcome if they are to plot below this 
line, like the steadily dropping bar in a limbo-dancing 
contest. Complexity, measured by number of 
parameters, is penalized in a linear manner. The line 
therefore represents a numerical representation of 
Occam’s razor. It might perhaps therefore fairly be 
dubbed the “Occam line” for this dataset. 

 

The criterion that the causal model should lie below 
the Occam line on the lofsos-parameter diagram if it 
is to be preferred to the null model, is the same as 
specifying that the F-ratio for a dataset be greater 
than one, if the null hypothesis is to be rejected. This 
viewpoint shows why an F-ratio that is less than one 
is not of interest: this represents a model that lies 
above the line, and so fits the data worse than the null 
model once the penalty for complexity has been 
imposed. Clearly such a model is undesirable.  

 

This does not of course suffice to show how the 

statistical distribution of the F-ratio is calculated in any 

given case: for that, one still has to use the statistical 

packages (or look it up in a book of statistical tables). 

But it does provide a logical foundation for an 

explanation of what the F-ratio is really doing. The 

presence of random error in the sampling of data from 

a population or populations means that the F-ratio must 

not only be greater than one, but significantly greater 
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than one for the causal hypothesis to be preferred, in 

order to limit the type I error rate.  

 

Besides showing in a qualitative way why the F-ratio 

works, this approach has two further benefits. The 

concept of degrees of freedom is often hard to 

understand. In the present approach, it arises naturally. 

A degree of freedom is just the difference between two 

other numbers, namely the number of parameters in a 

pair of models. For example, the between groups 

degrees of freedom is the difference between the 

number of parameters in the causal model, and the 

number in the null model. The within groups degrees of 

freedom is the difference in parameter numbers 

between the causal and saturated models. 

 

The second benefit is that an unbiased measure of 

effect size arises in a natural way from the diagram. It 

turns out that adjusted R-squared, or equivalently, 

epsilon-squared, is the obvious one to take when you 

look at the lofsos-parameter picture (see Allen, 2018 

for details).  

 

This approach has been applied more widely to explain 

the analysis of a range of statistical procedures based 

on the ANOVA method, in textbook format (Allen, 

2017). This book demonstrates that the method is not 

simply a theoretical ideal with no real world application. 

It is hoped that this will introduce the method to a wider 

audience. Meanwhile the present paper may serve to 

alert teachers of statistics to a new view of the basics 

of the subject, which may be of value in their own 

practice.  
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