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Adaptive Model Predictive Control of Yaw Rate and Lateral Acceleration for an
Active Steering Vehicle Based on Tire Stiffness Estimation
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Abstract: Dynamic systems for vehicles are commonly established based on physical rules that are

simplified and are not accurately reflective of their dynamic characteristics under certain operating
conditions, affecting their accuracy and safety. This paper presents an adaptive model predictive
controller (AMPC) with an estimator that controls the yaw rate and lateral acceleration of a realistic
ground vehicle. A number of vehicle parameters are estimated using different advanced estimators, of
which recursive least squares is one that is widely used. AMPCs and estimators are used to manage the
driving process in order for vehicles to remain stable and controllable. In this research, experiments were
conducted on a realistic vehicle based on a nonlinear brush tire model. In this estimator, lateral force
measurements are analyzed to estimate the tire cornering stiffnesses that are used in the AMPC from a
linear bicycle model (lateral force model), where each parameter describes the nonlinearity of the vehicle
model. The results demonstrate that the controlled vehicle's performance is improved by combining a
recursive least squares estimator with an AMPC in the simulation process. As tire stiffness estimates
become more accurate, AMPC performance improves. Yet, AMPC controllers are described in terms of a
table of design parameters. As different steering inputs are applied to different vehicles, the yaw rate and
lateral acceleration are varied, while tire stiffness is determined. According to the results of this paper, the
proposed method for estimating tire-cornering stiffness exhibits high estimation accuracy, robustness,
computational efficiency, stability, comfort, and accuracy and reliability under a variety of steering input

maneuvers using an AMPC controller.

Keywords: Adaptive model predictive control; Brush tire model; Vehicle stability control; Tire cornering

stiffness; least regression square estimation.
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1 INTRODUCTION

Engineers in the field of automotive mechatronics use modern technologies in order to enhance vehicle
safety. Numerous industrial sectors, ranging from small to large companies, are also engaged in the
development of vehicle dynamics and control. In recent years, advanced driver assistance systems
(ADAS), such as electronic stability control (ESC) and autonomous emergency braking (AEB), have led to
improvements in traffic safety and driving comfortin intelligent vehicles (Wang etal., 2022). Additionally,
the development of advanced control systems for various types of vehicles under different conditions
has increased in recent decades (Chen et al.,, 2023; Yahagi & Suzuki, 2023). Consequently, modern
vehicle technologies may reduce traffic congestion, energy consumption, pollution, and driving errors as
well as prevent accidents (Mietzner et al., 2009). Every day, approximately 3700 people are killed in road
traffic collisions around the world (Blagojevic & Ivanis, 2012). The average number of passengers in a
vehicle in 2018 was approximately 1.5 million, and it is imperative that the safety of these passengers be
ensured (Global Road Safety, 2023). As a potential solution to these problems, autonomous vehicles
have attracted considerable interest (Yurtsever et al., 2020). Nevertheless, systems for estimating and
controlling friction are extremely importantin many applications, such as braking, autonomous vehicles,
racing, and stability control. The estimation of tire-road friction coefficients has always been a hot topic
in vehicle control. Additionally, this is a significant consideration when it comes to electric vehicles (EVs)
with four-wheel independent steering and driving (Eskandarian et al., 2019). In the context of
autonomous driving, intelligent tire systems present promising solutions for achieving precise vehicle

state estimations, localization, stability, and motion control (Davis & Boundy, 2021). By maximizing tire
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saturation in high sideslip drifting maneuvers, autonomous vehicles are capable of substantially

improving their handling capabilities.

A large number of singular motion control methods have been developed in conventional drifting
controllers, but these methods are not suitable for general driving needs (Zhang et al., 2023). There are
many traditional controllers available in the conventional method, such as the Pl controller, which are
incapable of realizing the desired yaw-rate response due to the fact that the yaw-rate characteristics of
the vehicle change with vehicle velocity (Xu et al., 2023). As a result of the characteristics of ASV's
operation, autonomous driving and intelligent control are of utmost importance. Throughout the
intelligent control process, the tire-road friction coefficient plays a very important role in determining the
extreme tire force directly. A suitable control method must therefore be selected that is compatible with
the used vehicle and parameters in order to ensure the professional control of the vehicle. In the field of
vehicle dynamics, model predictive controllers are widely used. They are considered to be the most
appropriate control technique for handling vehicle dynamics (Hajiloo et al., 2020). As well as being used
to resolve conflicts between collision avoidance, vehicle stability, and path tracking control objectives, it
has also been utilized to address conflicts between them (Gao et al,, 2021). One example is the use of a
nonlinear model predictive direct yaw moment control alongside trailer sway mitigation (De Bernardis
etal, 2023). Moreover, aregenerative braking control for distributed drive EVs has been developed based
on least square estimation of the slope of the road and the mass of the vehicle (Chen etal., 2023). As part
of conditional automation and partially automated driving, adaptive cruise control systems have been
introduced (Shakouri & Ordys, 2014). Automated driving includes a variety of levels, including
automated driving decisions (Nilsson et al., 2016), trajectory planning (Li et al., 2015), and path tracking

control (Wang et al., 2016).

Vehicles are typically equipped with advanced control systems to enhance fuel economy, emissions,
passenger comfort, stability, and safety. Modern vehicle control systems require accurate knowledge of
a vehicle's side slip and yaw rate (Daily & Bevly, 2004). A linear model of a vehicle is updated using
estimated values of cornering stiffness or side slip angle. It has recently been demonstrated that a GPS
attitude system with two antennas is capable of directly measuring sideslip because it provides both a
velocity vector and a true heading (Nishio et al., 2001; Zhang et al., 2016). Over the past few decades,
extensive research has been conducted on the development of tire models. Therefore, different tire
models have been proposed and applied to the design of estimators and controllers, such as the Magic
Formula, the Dug-off model, Pacejka's tire model, and the Brush model. For the purpose of simulating a
controller for a vehicle, a nonlinear model of the vehicle is used in this paper where the nonlinear vehicle
model consists of four nonlinear tires. Furthermore, the model incorporates the transfer of weight
between tires. Yet, adaptive model predictive control is employed to control the system. In this controller,
linear tire models are used in conjunction with a bicycle model. For the purpose of estimating the stiffness
of linear tires, measurements are made of a "real" nonlinear vehicle. By means of model reference control,
adaptive model predictive controllers are provided with reference yaw rates. Finally, for the purpose of
producing the optimal yaw rate response for the steering input of the driver, an ideal bicycle model

vehicle is used as a reference.
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Section 2 describes the linear bicycle model, which is used as an ideal reference to generate reference
yaw rate and lateral acceleration. In Section 3, a nonlinear four-wheel car model is presented with both
longitudinal and lateral directions, controlling the vehicle as if it were a "real” vehicle by means of suitable
nonlineartire formulas. Real vehicles are described by the Ackerman condition. To ensure a more realistic
model, a weight transfer model is also taken into account for each tire. Additionally, aerodynamic effects
are also applied to the longitudinal direction of the vehicle. The fourth section explains the estimator and
illustrates how it can be used to estimate tire stiffness using simulations. In Section 5, an AMPC with an
estimator is presented to control the vehicle's yaw rate and acceleration by default. In Sections 5 and 6,
several simulations are presented to demonstrate how steering input variance affects the system's
cornering stiffness and outputs. The simulations are conducted using realistic values for the parameters

of the vehicles using the MATLAB simulation program.
2 REFERENCE MODEL

In this section, the linear lateral dynamics tire force bicycle model with two degrees of freedom will be
introduced, which will provide anideal yaw rate as a reference for the AMPC to be used in the subsequent
section. The states of the system are represented by the yaw rate 7" and the lateral velocity Vy. Inview of
the factthatit utilizes a lateral dynamic model, the longitudinal velocity U, remains constant. A schematic
diagram of the bicycle model is shown in Figure 1. The lateral dynamic equations of motion for a bicycle

model with a mass 1 are given below:

m(fzy + rvx) =Fyr+E, O]
1,7 = =L.Fy; + .E, )]

Where Fyf and Fyr are lateral rear force and lateral front force respectively. I, is mass moment of inertia
of the vehicle. At high speeds, steering produces small slip angles to maintain linear forces as in the

following equations:

= ca;, (©)
=ca, 4)

- on
R

Where C; and C, are front and rear cornering stiffness coefficients respectively. Something to notice is
that the cornering stiffness coefficients as well as the yaw moment of inertia cannot be accurately
identified in practice so they can be estimated (Nishio etal., 2001). Small front and rear lateral slip angles

(0 and ) are calculated as in equations (5) and (6):

" _vy—rlr (s)
r = ‘U)lc
v, + 71 6
@ =211 s ©)
Vx

Where lf is the distance from front axle to the center of gravity and L. is the distance from rear axle to

the center of the gravity, § is the steering input. Substituting equations (3), (4) into (1), (2):

m(ﬁy + rvx) = —Cra, — Cray @)
IZ'I:' = —erar + lfoa’f (8)
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Combining equations (5), (6) to (7), (8) obtains the state equations as in the following:

—(c. +¢C —(c.l.+1.C C ©)
) = (r f)vy— (rr ff)r——fS
muv, muv, m
I.C. —I:C L%c. —1.%C I-C (10)
__(rr ff)y_(r r Y f)vy+g6
Iva Iva IZ

The previous two equations can be easily presented by state a space model matrix form as shown in

equations (11) and (12) below:

x = Ax + Bu (11)

y=Cx (12)

From equations (9) and (10), the matrices for state space presentation is shown in equations (13) and

(14):

“(eprer)  -(pep-lra) ol [ (13)
[Vy] _ mv, m vy x Y m (S
.| = 2 2 *l-ac
T —(I;cf—lrc,) _(lf Cf—lr C‘r) r _f
mliy, mly, Iz
Yy (14)
y=¢C
r

Where C is a 2x2 identity matrix to demonstrate that both states of lateral velocity and yaw rate are

available as well.

Figure (1). Schematic diagram of bicycle model.

3  FOURTIRES CAR MODEL

In this section, a proposed model of a car will be derived and modeled. Figure 2 illustrates the dynamic

four-tire model.
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Figure (2). Four tires car model.

3.1 Steering Commands

Since afour-wheeled car modelincludes both right and left steering, there will be inner and outer steering
wheels as can be seen in Figure 3. If a vehicle turns left, for example, the right front wheel becomes the
inner wheel and rotates more than the left front wheel, which is the outer wheel. This can, however, be

accomplished easily by using the car's differential. Geometries should include inner and outer steering

angles that are calculated and updated according to the input steering from the user or controller.

o 0o

Figure (3). Ackermann condition for steering system.

The following equations represent the symbols in Ackermann condition for steering systems:

R, = (lf + lr) cot(6)
lr + L.

I+ 1,
t
(i + 1) cot(8) +
I +1,
tr

R1+7

L+ 1,
(U +1,) cot(8) + 5

1

6, = tan~

(15)
(16)

(17)

(18)

(19)
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Inner and outer wheels are defined during turns depending on the steering angle of the user or controller

as in equations (20) and (21):

Se = {Si, ainput <0 (20)

T 60: 6input =0

(Sﬂ _ {50' 5input <0 (21)
61‘! 6input =0

4  FOURTIRES VEHICLE MODEL

In this section, a proposed vehicle model will be derived and modeled. Figure 2 shows the dynamic four

tire model.

41 Slip angle calculations

The four-tire model uses both longitudinal and lateral forces which means it maintains variable

longitudinal velocity. Slip angles are calculated in equations (22), (23), (24) and (25):

vy + 1l (22)
afr = 7{} - 5]‘1‘
Uy —T 7
oyt rle (23)
ar = . 5 °n
Vx r >

v, —rl, 24
aTT = [r ( )

Vx - r E
Vx - rlT 25
Ay = 1, ( )

Vx I'E

4.2 Force and moment equations

The dynamic equations for the car model are expressed as three degrees of freedom (3 DOF). The lateral,

longitudinal and yaw rate of the four-tire vehicle model is obtained from equations (26), (27) and (28):

m(vy +ver) =Fypr + Fy, i+ Fypr + Fy (26)

m(Vy + vyr) = Fypr + Frpi + Fopr + Frp — Fy (27)

60



Palestine Technical University Research Journal, 2024, 12(2), 54-79

t t t t
. f f f f 28
Ly = lny,fr + lny,fl - lrFy,rr - lrFy,rl - EFx,fr + ?Fx,ﬂ - EFx,rT + EFx,Tl 28)
where F is aerodynamic drag force. The aerodynamic formula is as in equation (29):
(29)

1
Fq = EPACdeZ

where p is the air density 1.225 kg/m3, A is the front area m? and ¢ is the drag coefficient and it is equal

to 0.12.

4.3 Weight transfer model

It is imperative to take into account the change of the normal forces on the vehicle tires as the vehicles
weight transfers between them in order to calculate accurate friction usage during high acceleration as
the vehicle operates close to the limits of handling. Assuming that the vehicle acts as a rigid body, the
normal forces on the front and rear axles can be calculated by taking into account the longitudinal weight

transfer due to ax as well as follow:

P (lrg — heg ax) (30)
zf I,
_ <lf9 + hee ax) @31
Fzr - L

where g is the gravitational acceleration, h¢g is the vertical distance from the center of gravity of the

vehicle to the ground and L is the wheelbase, which is the sum of lf and [,

The amount of lateral weight transfer on each axle is calculated as follows:

hq(F,s + F.

AF,, = £ ( yfld yfr) (32)
h.(F, s + E

AFzr — r( yfrd yrr) (33)

where hf and h,are the heights of the front and rear roll centers from the ground, respectively. The
normal forces are used as inputs to the system during tire-force calculation to present the effect on the
outputs. The normal force on each wheel due to weight transfer can be calculated as in the series of

equations (34), (35), (36) and (37):
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Fyr (34)

FZf‘r': 2 +AFZf

F,
f 35
Fyp0 Z%—Asz 35)

F,
Fprr = =+ AF,, (36)

~

Fyi =2 — AE, 67

4.4 Couple brush tire model

This paper uses a modified version of Pacejka’s combined slip brush tire model (Pacejka, 2005). For a
given tire slip angle @ and a longitudinal slip k as in equation (38), the weighted vector norm of the

theoretical slip quantities f is defined as follows:

k _ (A)re - vx (38)

F= o+ (Cu)’ .

where g, and g;, are the theoretical longitudinal and lateral slips respectively as in equations (40) and

(41).

k (40)
T 1xk
_ tal’la’ (41)
YT1¥k

and Cy and C, are the longitudinal and lateral tire stiffnesses, respectively. The magnitude of the total

force on the tire F is given as follows:

1 1 42
Fr st f S 3E, )
z

uE; f > 3uF;

F= f_3qu

The total force F is projected into longitudinal and lateral components F; and F, according to the ratio

of the slip quantities.
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Cyoyx  —Cq
(Fun o) = (72 F,—2F) (43)

5  FRICTION ESTIMATION

For friction estimation purposes it is assumed that tire forces and slip angles are measured from a “real”
vehicle. Itis assumed that tire force sensors are available. Tire force sensors that are economical feasible
are currently under development (Hayward et al., 1999). Slip angles can also be measured using GPS

signals (Cohen et al., 1994; Acosta et al., 2019). Figure 4 shows the estimator process diagram.

ﬂy
Fyr Fyr
Non-liner
Estimator » Cp, Cr
8 = Car Model o
ar Oy

r

Figure (4). Estimator process diagram.

The cornering stiffness coefficients are estimated based on the linear equation as follows:

F(t) = C(t) a(t) (44)

This paper uses recursive least square estimation using the forgetting factor method which can be

explained in the following series of equations (45) to (48):

CH=Ct—-1)+K@O(F@®) -F@) (45)

C(t) is the cornering stiffness estimated at time t. F (t) is the observed lateral force at time t, and £ (t)
is the prediction of F (t) based on observations up to time t — 1. The gain, K (t) in (44), determines how

much the current prediction error of lateral force F(t) — F (t) affects the update of the estimated C.

K@) =Q@®) a(t) (46)

where a(t) is the regression computed passed on previous values of measured lateral force and stiffness.

Q(t) can be obtained by minimizing (46) at time t.
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_ P(t-1) 47
QM) = A+a(®)T P(t-1) a(t) “47)

Using equation (48), the software computes a positive-definite matrix where the residuals (difference

between the estimated and measured outputs) are white noise.

_ Tp(t—
P(t) = (P(t ~1) _ P(t-1) a(t) a(®)TP(t 1)) 48)

1
y A+a ()T P(t-1) a(t)

Estimated cornering stiffness depends on the car's steering input variance. Figure 5. shows how estimated
stiffness, lateral acceleration and yaw rate are affected by random step steering input size. Steering inputs

1,2 and 3 have variances of 3, 5 and 7 degrees, respectively. The car parameters used for simulation are

listed in Table 1.

)
19
Q
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Figure (5). Cornering stiffness estimates for different steering input sizes.

Table 1. Real car parameters
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Parameter Symbol Value Unit
Vehicle mass m 1200 Kg
Yaw moment of inertia /, 1500 kg-m?
Front axle-CG distance Iy 1 M
Rear axle-CG distance / 1.2 M
Left-right wheels distance Lt 1.2 M
ground to CG distance hes 0.9 M
Wheel axles to CG distance hyh, 0.3 M
Car width t 1.2 M
Wheel base rim radius I 0.3 M
Front area A 2 m?
Drag coefficient ¢y 0.12 -
Longitudinal C, 50000 N/rad
Lateral Cy 50000 N/rad
6 MPC CONTROLLER DESIGN

MPC controller deals with a feedback algorithm that optimizes each time step to get the optimal solution.

Figure 6 shows a schematic diagram of MPC controller.

r—-———=—=—===1

|
|
|
Desired 1

Inputs / States 1

L. Prediction
Optimizer

Con&

Plant

Actions model

Optimal Solution

Measured States

Plant

> Desired

model

(State Estimator)

Figure (6). Schematic diagram of MPC controller

- Inputs / States

The constrained optimization problem can be minimized using the following quadratic programming

(QP) method as in equation (49):

XTHx — gTx; Ex

<b

(49)

where x = (k); H means symmetric matrix, g represents the gradient vector. E and b are the

constraint matrices used in the QP. The first element of the optimal sequence Au(k) is to be selected as

the solution of the control system.
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Au(k) = [1,0,...,0] - Au(k); v(D=X%,Aup) (50)

In this desert, the input to the real car’s model is presented as the steering input (6.) which depends on
the additional steering input &, and the driver steering input 84 can be presented as in the following

equation (51):

6. =64+ 8, (51)

6.1 Adaptive MPC for yaw rate control

Since the plant is assumed to have unknown tire parameters, an AMPC is used based on linearization.
This is such that a linear model is computed as operating conditions change. At each time step, the
internal plant simulation is updated by the AMPC controller with a linear bicycle model. Here, cornering
stiffness and longitudinal velocity are the variables to be updated. In addition, the steering angle from
AMPC states and yaw rate. Figure 6 shows a diagram of the AMPC control process based on tire stiffness

estimation.

I Nt P €1y €y
| Estimator
F\-r F\'r e,
—— My
T 1 p
R Update Plant 5c States
Model AMPC
Non-liner
Fret (@y)rer Car Model .
Driver Linear .
Steering =" Bicycle
Input Model I
8a Vi desired

Figure (7). AMPC with friction estimation control process

The plant model used as the basis for adaptive MPC must be an LTI (linear time invariant) discrete-time,
state-space model. In adaptive MPC, the nominal operating point should be updated to be consistent
with the updated plant model as well. The plant model in terms of deviations from the nominal condition

structure is presented in equation (52):

x(k+1)=x+A(x(k) — %) + B(u(k) —u) + Ax (52)

y(k) =y + C(x(k) — %) (53)
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where k is the discrete time step, X is the nominal state has the parameters of Cr and C;. to be updated,

Ax is the increment of nominal state, & is nominal input matrix and ¥ is the nominal output matrix.

Ax = Ax(t) + Bx(t)-x (54)
6.2 Prediction equation design

The plant model in terms of deviations from the nominal condition structure is described as in the

equation (52) which a discrete time model for the state space model shown in (11) and (12):

x(k +1) = Acx(k) + Beyu(k) + Bead (k) (55)

y(k) = Cx(k) (56)

The static error of the system can be eliminated so that the discrete system model as can be written as an

incremental type:

Ax(k + 1) = A, Ax(k) + B Au(k) + BogAd(k) (57)

y(k) = CAx(k) + y(k — 1) (58)

According to the control horizon M and prediction horizon M, the solution for each discrete time step can
be written as in the sequence of equations from (59) to (62). The matric x(k) is to be used as the starting

solution of the prediction issue as in (59):

Ax(k + 1|k) = A A% (k) + Bou(k) + Bogd (k) (59)

(k+2|k) = A,A%(k) + Bu(k + 1) + Bogd(k + 1) = A2A%(k) + (60)
A B u(k) + Boyd(k + 1) + A B.gAd (k)

Ax(k + M|k) = AMAR (k) + A¥1B, Au(k) + AY~2B.Au(k + (61)
1) +-+ByAu(k+ M —1) + A¥"1B ,Ad (k)

Ax(k + Plk) = APAR(k) + AE7'B Au(k) + AP?B,Au(k+1) +  (62)
4+ By, Au(k + P — 1) + AE1B_,Ad (k)

As aresult, according to the basis of the predictive states, the predictive outputs at each time step (k)

are given as (63):

(63)
y(k + 1|k) = C.AA%(k) + CcBou(k) + C.BegAd (k) + 9 (k)
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y(k + 2]k) = (C.AZ + C.A)DZ(K) + (CcAcBey + CcBey)u(k)
+ C.B.,Au(k + 1) + (C,A.B.q + C.B.g)Ad(k) + 9 (k)

y(k + Plk) = X, CALAR(K) + iy AT By Au(k) + (64)
Zle_ll CcAf:_chuAu(k) +t ZLP=_11\/Pr1 CcAi‘_chuAu(k +M - 1) +
i=1 CcAC BegAd (k) + 9(k)

The sequence for the control input rate of change A U(k)and prediction control output Y(k) are defined

in (62) and (66) respectively:

Au(k|k) (65)
Ao Au(k + 11k)

Mu(k + M —1]k)

MXx1

y(k + 1]k) (66)
V()= y(k + 21

y(k + Plk)

Px1

The value of AU(k) is to be set zero beyond the control horizon. Given that the driver’s intention is
constantly changing, the reference yaw rate in the prediction horizon is calculated according to the

driver's intention. This is to obtain improved control performance. 13- (k) is the reference yaw rate

that can be defined in the equations (67) to (69):

rref(k +1) = rref(k) + E(rref(k) - rref(k - 1)) (67)
Trep (k +2) = Trgp (k + 1) + € (Tyep (k) = Tyep (k — 1)) (68)
Trer (k + P) = tyep(k + P = 1) + € (Tyep (k) = Trep (k — 1)) (69)

where € is the weight factor that affects the tracking performance of the real car’s model. @y, yo ¢ (k)is

the reference yaw rate that can be defined as in equations (70) to (72):

ay ref(k + 1) = ay ref(k) + e(ay ref(k) —Qy ref(k - 1)) (70)
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Ay ror(k +2) = ayror(k +1) + € (ayref(k) — Ay yop(k — 1)) (71)

@y rer(k + P) = @y rep (ke + P = 1) + € (@ rep (k) = @y rep (k — 1)) (72)

The input reference sequence R(k + 1) is defined as follows:

rref(k +1) ay ref(k +1) (73)
R(k + 1) — rref(]f + 2) ayref(:k + 2)
T‘ref(k + P) ayref(k + P) 2
6.3 Cost function equations

Performing optimized control problems requires a cost function design for the tracking problem. In this
research the main priority is to track the desired rate of yaw rate which defines the first cost function part
(J1)- Then the secondary aim is to reduce the rate of change of controlled steering input which defines

the second cost function part (/). The cost functions are presented as follows:
Jo=1Y(k+1) = ROk + DIG, = B[k +ilk) = rep(k +D%.01] - (79)
J2 = 1AU()IG, = X5 (A8 (k + i = 11)*Q,] (75)

where ()1 is the weight factor responsible for tracking performance and (, is responsible for adjusting

control inputs. The total cost function for the process of choosing the optimal solution (J) can be written

as:
J=h+) (76)

J=IYCer)RQ D 1AV, (77)

The controller deals with hard constraints which are the limits of steering input (5d) and the rate of

change of steering inputs (A5d). These can be written as follows:
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_60 min < 6c(k + ilk) < _60 min (78)

—AS; min < A6 (k +ilk) < =6, min (79)
wherel = 1,2,...,M — 1.

The specified design parameters used to control the vehicle using AMPC are tabulated as in Table 2:

Table (2). Real car parameters.

Parameter Symbol Value Unit
MPC prediction horizon P 20 -
MPC sampling time T, 0.001 Sec
MPC control horizon M 4 -
Minimum steering input constrain S -T/6 Rad
Maximum steering input constrain - /6 Rad
Minimum steering input rate constrain Smin 15 ‘/sec
Maximum steering input rate constrain 8. 15 */sec
Minimum output yaw rate constrains i -0.3 rad/sec
Maximum output yaw rate constrains Fax 0.3 rad/sec
Minimum output lateral acceleration i -4 rad/sec
Maximum output lateral acceleration oo 4 rad/sec
Weight of inputs Q; 0 -
Weight of rate of inputs Q, 0.44 -
Weight of outputs 1 -

7  RESULTS AND DISCUSSION

In this section, a comparison of three different vehicles will be conducted through different steering input
tests to show the effectiveness of the AMPC controllers and used estimator to observe the yaw rate, lateral
acceleration and estimated cornering stiffness and how are they affected. The first test is a sinewave
saturated at the absolute value of 3 degrees, the second test is a step steering input with a slope of 10
degrees/sec and saturated at 3 degrees. Both first and second tests are run for 6 seconds. The third test
uses a random 3 degrees steering input variance and run for 8 seconds to show the improvement of
steering oscillations while estimating correct cornering stiffness of real car model corresponding to the

reference inputs from ideal car’s model. Each simulation works with 21 m/s.

For the firstand second tests, Figures 8 and 13 illustrate the steering inputs for open loop. This is the same
forthe ideal vehicle and uncontrolled real vehicle, and the steering of controlled vehicles. It is shown that
the controlled vehicle with an estimator has a steering input closer to the open loop signal than the
controlled vehicle without an estimator. In Figures 9 and 14, the uncontrolled car reached a very high
yaw rate, suggesting that the vehicle has become unstable and oversteering. Figures 10 and 15 illustrate

the lateral acceleration response. Clearly, the controlled vehicle with cornering stiffness estimation has a
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lower yaw rate and lateral acceleration than the vehicle without an estimator, while the uncontrolled
vehicle exhibits a high lateral acceleration. For front and rear tires, figures 11 and 16 illustrate the
estimated cornering stiffness. Within three seconds, the cornering stiffness reached the correct estimated
value, demonstrating the advantages of the controller and estimator. In Figures 12 and 17, the vehicle's
XY trajectory is shown. It is demonstrated that the car equipped with the estimator follows ideal XY baths

better than other vehicles.
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Increasing steering inputvariance results in reduced cornering stiff nesses, as shown in Figure 6 of Section
5. As a result of high steering inputs, tire forces are expected to saturate. Therefore, at higher slip angles,

the tire produces smaller force increases per increase in slip angle, which results in lower tire stiffness.

In Figure 18, the steering angles from the open loop and the AMPC controller are shown, showing that
the AMPC steering output oscillates during the first three seconds of the simulation. Conversely, the
AMPC steering outputs are much smoother after second number three. This phenomenon occurs
because the model used by the AMPC is not accurate at the start of the simulation, however after
approximately three seconds, the estimator reaches a steady state of the correct cornering stiffness values
that affect the real car model to follow the desired reference signals from the reference ideal model. As a
result, the AMPC makes incorrect predictions when optimizing steering output, resulting in oscillations
in steering control. By using the estimated tire cornering stiffness values, the AMPC model updates the

tire stiffness as the simulation progresses. In this way, the AMPC is able to perform better.

Both the front and rear tires were initially designed with cornering stiffnesses of 80 kN/rad and 100
kN/rad, respectively. For the first, second, and third steering inputs, the estimator determined the front
tire stiffness to be 70 kN/rad, 68 kN/rad, and 69 kN/rad, respectively. Also, the rear tire stiffness should
be setat 74 kN/rad, 78 kN/rad, and 77 kN/rad for the first, second, and third steering inputs, respectively.
On the real car plant model, the final values for both front and rear estimated cornering stiffness were

almost the same, demonstrating the performance of both AMPC controller and estimator.

74



Palestine Technical University Research Journal, 2024, 12(2), 54-79

I I

7y

@

8 -1

[@)]

2 = = = = gteering input

o -2 H m— Steering input from AMPC |

£ |

o ]

2

cD —3 - - OE - O . . - . . -

| | |
2 4 6
Time [sec]
Figure (17). Steering input from user and AMPC
w10t Estimated friction coeficients
g‘lu.a
2
= 10 \ = = Cf
[7s]
fih) 95 Cr
£l
@ 9
(=]
g |\
[4F)
: \.
o 8 - T ——
o *
% 7.5 ¥
£ |
= 7 B I
w
0 1 2 3 4 5 6 7 8

Time (seconds)

Figure (18). Estimated cornering stiffnesses for front and rear tires

71 Comparison among technologies

A comparison of the three used vehicles compared to the ideal vehicle is presented in Table 3 to

demonstrate what technology should be used in vehicles to ensure stability and lateral comfort.

Table (3) Comparison between three vehicles corresponding to the ideal one.

Controlled real car with

Uncontrolled real car Controlled real car
estimation
Same ideal Higher, Very closed, without
Steering angle
(open loop) with oscillations oscillations
Not following Closer Almost same as ideal
Yaw rate
(unstable) (stable) (stable)
Not following ideal Almost same as ideal
Closer to the ideal
Lateral acceleration response response
response (comfortable)
(uncomfortable) (comfortable)
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Estimated cornering 3 seconds to estimate
stiffness correct values
Following ideal car’s XY Not following

closer to the ideal XY path Almost ideal same XY path
trajectory ideal path
According to the results of the previous table, the controlled vehicle with cornering stiffness estimator
was the most stable and had the best lateral comfort with minimal oscillations of the steering angle from
the controller. Additionally, it has at most the same XY trajectory path as the ideal vehicle for autonomous
driving, so the results in this study indicate that controlled vehicles with estimators are the preferred

technology.

7.2 Comparison among previous studies

Several papers in the field of vehicle dynamics and control have employed linear model predictive
controllers (LMPCs) for improving the handling limits of yaw rate by actively steering the front of the
vehicle (Li et al., 2020). Other papers used a long short-term memory network for cornering stiffness
estimation, thereby providing significantinformation to a vehicle's direct yaw robust controller system in
order to construct a lateral dynamic model. For enhancing performance and stability, other researchers
have applied the Levenberg Marquardtapproach (Pereiraetal., 2021). In Table 4, the effectiveness of this
research is compared with that of recent previous studies in terms of the development of an effective

controller and estimation for stabilizing the lateral performance of ground vehicles.

Table (4) Comparison with previous studies

Approach / Study
Comparisons Lietal. Lian et al. Pereiraetal. Current Study

(2020) (2023) (2021)

Number of tires 2 tires 4 tires 6 tires 4 tires
1240 kg and
Mass and yaw 1159 kg and 15770 kg and 1200 kg and 1500
2031.4

Vehicles plant moment of inertia g 617 kg.m? 63595 kg.m? kg.m?

model 400000,

Parameters Front and real 52618 and - 300000 and 30000 and 40000
cornering stiffness 52185 N/rad R 200000 N/rad
N/rad
Longitudinal
22.2m/s 25m/s 219m/s 21m/s
velocity
DYC robust
Type of controller LAMPC - AMPC
controller
Speed of the control
Control system
system

0.2 sec 0.7 sec ---- 0.1 sec

implemented by

rising time.
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/ yaw rate yaw rate and
yaw rate, lateral
Inputs / Outputs Front sideslip
J— / Front acceleration
of controller steering angle/ front
steering angle
angle steering angle
Controlled yaw rate
4 rad/ sec 2.5 rad/sec - 0.4rad/ sec
limits
Controlled lateral ,
- - - 4 m/sec
acceleration limits
Long short-
Estimators used for Levenberg
- term memory Least square recursive
tire stiffness Marquardt
network
Estimation Time required to
reach correct
- 0.1 sec 8 sec 3 sec

cornering

stiffnesses

8 CONCLUSIONS

The present study examined how AMPC controllers can be used to control the yaw rate and lateral
acceleration of a nonlinear car's model using active front steering angle in conjunction with the prediction
of cornering stiffness. The nonlinear plant model was linearized usingan AMPC controller, and estimated
cornering stiffnesses were updated into a linear ideal model based on a bicycle model. Models of real and
ideal vehicles have been described and simulated using MATLAB software. The proposed yaw rate and
lateral acceleration control system was tested in three separate ways in order to determine the optimal
yaw rate, lateral acceleration, and XY trajectory. Based on the results of the study, AMPC performance is
enhanced when used in conjunction with tire stiffness estimation. In addition, the estimator took
approximately three seconds to reach the correct values for both front and rear tire stiffnesses. As a result,
the controller was able to track the desired state responses even within a short period of time, about 0.1
seconds. A model of the proposed system could be developed using artificial intelligence (Al) for further
research and development on the effects of the environment and the car as a result of input road

maneuvers.
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