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Abstract: Dynamic systems for vehicles are commonly established based on physical rules that are 

simplified and are not accurately reflective of their dynamic characteristics under certain operating 

conditions, affecting their accuracy and safety. This paper presents an adaptive model predictive 

controller (AMPC) with an estimator that controls the yaw rate and lateral acceleration of a realistic 

ground vehicle. A number of vehicle parameters are estimated using different advanced estimators, of 

which recursive least squares is one that is widely used. AMPCs and estimators are used to manage the 

driving process in order for vehicles to remain stable and controllable. In this research, experiments were 

conducted on a realistic vehicle based on a nonlinear brush tire model. In this estimator, lateral force 

measurements are analyzed to estimate the tire cornering stiffnesses that are used in the AMPC from a 

linear bicycle model (lateral force model), where each parameter describes the nonlinearity of the vehicle 

model. The results demonstrate that the controlled vehicle's performance is improved by combining a 

recursive least squares estimator with an AMPC in the simulation process. As tire stiffness estimates 

become more accurate, AMPC performance improves. Yet, AMPC controllers are described in terms of a 

table of design parameters. As different steering inputs are applied to different vehicles, the yaw rate and 

lateral acceleration are varied, while tire stiffness is determined. According to the results of this paper, the 

proposed method for estimating tire-cornering stiffness exhibits high estimation accuracy, robustness, 

computational efficiency, stability, comfort, and accuracy and reliability under a variety of steering input 

maneuvers using an AMPC controller. 

Keywords: Adaptive model predictive control; Brush tire model; Vehicle stability control; Tire cornering 

stiffness; least regression square estimation. 
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بدقة    :المستخلص تعكس  ولا  مبسطة  فيزيائية  قواعد  على  بناء   للمركبات  الديناميكية  الأنظمة  إنشاء   
 
عادة                                                                                 يتم 
 
        

خصائصها الديناميكية في ظل ظروف تشغيل معينة، مما يؤثر على دقتها وسلامتها. تقدم هذه الورقة وحدة تحكم تنبؤية 

الجا والتسارع  الانحراف  معدل  في  يتحكم  مقدر  مع  التكيفي  من  للنموذج  عدد  تقدير  يتم  واقعية.  أرضية  لمركبة  نبي 

معلمات المركبات باستخدام مقدرات متقدمة مختلفة، منها المربعات الصغرى العودية التي تستخدم على نطاق واسع.  

ستخدم وحدات التحكم والمقدرات التنبؤية للنموذج التكيفي لإدارة عملية القيادة حتى تظل المركبات مستقرة  
 
                                                                                                 ت
 
ويمكن   

التحكم فيها. أجريت في هذا البحث تجارب على مركبة واقعية تعتمد على نموذج إطار فرشاة غير خطي. في هذا المقدر، 

التنبئية   التحكم  وحدة  في  المستخدمة  المنعطفات  عند  الإطارات  صلابة  لتقدير  الجانبية  القوة  قياسات  تحليل  يتم 

القوة الجانبية(، حيث تصف كل معلمة اللاخطية لنموذج السيارة.   للنموذج التكيفي من نموذج دراجة خطية )نموذج

توضح النتائج أن أداء السيارة المتحكم فيها قد تم تحسينه من خلال الجمع بين مقدر المربعات الصغرى التكراري ووحدة  

ثر دقة، يتحسن أداء  التحكم التنبؤية للنموذج التكيفي في عملية المحاكاة. عندما تصبح تقديرات صلابة الإطارات أك

وحدة التحكم التنبؤية للنموذج التكيفي. ومع ذلك، يتم وصف وحدات التحكم التنبؤية النموذجية التكيفية من حيث 

                                                                                                     جدول معلمات التصميم. نظر ا لتطبيق مدخلات توجيه مختلفة على مركبات مختلفة، يتنوع معدل الانعراج والتسارع  

لإطارات. وفقا لنتائج هذا البحث، فإن الطريقة المقترحة لتقدير صلابة الإطارات عند الجانبي، بينما يتم تحديد صلابة ا

المنعطفات تظهر دقة تقدير عالية، ومتانة، وكفاءة حسابية، وثبات، وراحة، ودقة وموثوقية في ظل مجموعة متنوعة  

 من مناورات إدخال التوجيه باستخدام وحدة تحكم تنبؤية للنموذج التكيفي.

المفتاحية  صلابة السيارة؛ ثبات في التحكم الفرشاة؛ إطار نموذج التكيفي؛ للنموذج التنبئي  التحكم:  الكلمات 

 الانحدار.  لمربع تقدير أقل المنعطفات؛ عند الإطارات

1 INTRODUCTION 

Engineers in the field of automotive mechatronics use modern technologies in order to enhance vehicle 

safety. Numerous industrial sectors, ranging from small to large companies, are also engaged in the 

development of vehicle dynamics and control. In recent years, advanced driver assistance systems 

(ADAS), such as electronic stability control (ESC) and autonomous emergency braking (AEB), have led to 

improvements in traffic safety and driving comfort in intelligent vehicles (Wang et al., 2022). Additionally, 

the development of advanced control systems for various types of vehicles under different conditions 

has increased in recent decades (Chen et al., 2023; Yahagi & Suzuki, 2023). Consequently, modern 

vehicle technologies may reduce traffic congestion, energy consumption, pollution, and driving errors as 

well as prevent accidents (Mietzner et al., 2009). Every day, approximately 3700 people are killed in road 

traffic collisions around the world (Blagojevic & Ivanis, 2012). The average number of passengers in a 

vehicle in 2018 was approximately 1.5 million, and it is imperative that the safety of these passengers be 

ensured (Global Road Safety, 2023). As a potential solution to these problems, autonomous vehicles 

have attracted considerable interest (Yurtsever et al., 2020). Nevertheless, systems for estimating and 

controlling friction are extremely important in many applications, such as braking, autonomous vehicles, 

racing, and stability control. The estimation of tire-road friction coefficients has always been a hot topic 

in vehicle control. Additionally, this is a significant consideration when it comes to electric vehicles (EVs) 

with four-wheel independent steering and driving (Eskandarian et al., 2019). In the context of 

autonomous driving, intelligent tire systems present promising solutions for achieving precise vehicle 

state estimations, localization, stability, and motion control (Davis & Boundy, 2021). By maximizing tire 
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saturation in high sideslip drifting maneuvers, autonomous vehicles are capable of substantially 

improving their handling capabilities. 

A large number of singular motion control methods have been developed in conventional drifting 

controllers, but these methods are not suitable for general driving needs (Zhang et al., 2023). There are 

many traditional controllers available in the conventional method, such as the PI controller, which are 

incapable of realizing the desired yaw-rate response due to the fact that the yaw-rate characteristics of 

the vehicle change with vehicle velocity (Xu et al., 2023). As a result of the characteristics of ASV's 

operation, autonomous driving and intelligent control are of utmost importance. Throughout the 

intelligent control process, the tire-road friction coefficient plays a very important role in determining the 

extreme tire force directly. A suitable control method must therefore be selected that is compatible with 

the used vehicle and parameters in order to ensure the professional control of the vehicle. In the field of 

vehicle dynamics, model predictive controllers are widely used. They are considered to be the most 

appropriate control technique for handling vehicle dynamics (Hajiloo et al., 2020). As well as being used 

to resolve conflicts between collision avoidance, vehicle stability, and path tracking control objectives, it 

has also been utilized to address conflicts between them (Gao et al., 2021). One example is the use of a 

nonlinear model predictive direct yaw moment control alongside trailer sway mitigation (De Bernardis 

et al., 2023). Moreover, a regenerative braking control for distributed drive EVs has been developed based 

on least square estimation of the slope of the road and the mass of the vehicle (Chen et al., 2023). As part 

of conditional automation and partially automated driving, adaptive cruise control systems have been 

introduced (Shakouri & Ordys, 2014). Automated driving includes a variety of levels, including 

automated driving decisions (Nilsson et al., 2016), trajectory planning (Li et al., 2015), and path tracking 

control (Wang et al., 2016). 

Vehicles are typically equipped with advanced control systems to enhance fuel economy, emissions, 

passenger comfort, stability, and safety. Modern vehicle control systems require accurate knowledge of 

a vehicle's side slip and yaw rate (Daily & Bevly, 2004). A linear model of a vehicle is updated using 

estimated values of cornering stiffness or side slip angle. It has recently been demonstrated that a GPS 

attitude system with two antennas is capable of directly measuring sideslip because it provides both a 

velocity vector and a true heading (Nishio et al., 2001; Zhang et al., 2016). Over the past few decades, 

extensive research has been conducted on the development of tire models. Therefore, different tire 

models have been proposed and applied to the design of estimators and controllers, such as the Magic 

Formula, the Dug-off model, Pacejka's tire model, and the Brush model. For the purpose of simulating a 

controller for a vehicle, a nonlinear model of the vehicle is used in this paper where the nonlinear vehicle 

model consists of four nonlinear tires. Furthermore, the model incorporates the transfer of weight 

between tires. Yet, adaptive model predictive control is employed to control the system. In this controller, 

linear tire models are used in conjunction with a bicycle model. For the purpose of estimating the stiffness 

of linear tires, measurements are made of a "real" nonlinear vehicle. By means of model reference control, 

adaptive model predictive controllers are provided with reference yaw rates. Finally, for the purpose of 

producing the optimal yaw rate response for the steering input of the driver, an ideal bicycle model 

vehicle is used as a reference. 
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Section 2 describes the linear bicycle model, which is used as an ideal reference to generate reference 

yaw rate and lateral acceleration. In Section 3, a nonlinear four-wheel car model is presented with both 

longitudinal and lateral directions, controlling the vehicle as if it were a "real" vehicle by means of suitable 

nonlinear tire formulas. Real vehicles are described by the Ackerman condition. To ensure a more realistic 

model, a weight transfer model is also taken into account for each tire. Additionally, aerodynamic effects 

are also applied to the longitudinal direction of the vehicle. The fourth section explains the estimator and 

illustrates how it can be used to estimate tire stiffness using simulations. In Section 5, an AMPC with an 

estimator is presented to control the vehicle's yaw rate and acceleration by default. In Sections 5 and 6, 

several simulations are presented to demonstrate how steering input variance affects the system's 

cornering stiffness and outputs. The simulations are conducted using realistic values for the parameters 

of the vehicles using the MATLAB simulation program. 

2 REFERENCE MODEL 

In this section, the linear lateral dynamics tire force bicycle model with two degrees of freedom will be 

introduced, which will provide an ideal yaw rate as a reference for the AMPC to be used in the subsequent 

section. The states of the system are represented by the yaw rate 𝑟 and the lateral velocity 𝑣𝑦. In view of 

the fact that it utilizes a lateral dynamic model, the longitudinal velocity 𝑣𝑥 remains constant. A schematic 

diagram of the bicycle model is shown in Figure 1. The lateral dynamic equations of motion for a bicycle 

model with a mass 𝑚 are given below: 

𝑚(�̇�𝑦 + 𝑟𝑣𝑥) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟  (1) 

𝐼𝑧 �̇� = −𝑙𝑟𝐹𝑦𝑓 + 𝑙𝑟𝐹𝑦𝑟  (2) 

Where 𝐹𝑦𝑓  and 𝐹𝑦𝑟  are lateral rear force and lateral front force respectively. 𝐼𝑧  is mass moment of inertia 

of the vehicle. At high speeds, steering produces small slip angles to maintain linear forces as in the 

following equations: 

Fyf = Cfαf  (3) 

Fyr = Crαr  (4) 

Where Cf  and Cr  are front and rear cornering stiffness coefficients respectively. Something to notice is 

that the cornering stiffness coefficients as well as the yaw moment of inertia cannot be accurately 

identified in practice so they can be estimated (Nishio et al., 2001). Small front and rear lateral slip angles 

(αf and αr) are calculated as in equations (5) and (6): 

𝛼𝑟 =
𝑣𝑦 − 𝑟𝑙𝑟

𝑣𝑥

 
(5) 

𝛼𝑓 =
𝑣𝑦 + 𝑟𝑙𝑓

𝑣𝑥

− 𝛿 
(6) 

Where 𝑙𝑓  is the distance from front axle to the center of gravity and 𝑙𝑟  is the distance from rear axle to 

the center of the gravity, 𝛿 is the steering input. Substituting equations (3), (4) into (1), (2): 

𝑚(�̇�𝑦 + 𝑟𝑣𝑥) = −𝐶𝑟𝛼𝑟 − 𝐶𝑓𝛼𝑓  (7) 

𝐼𝑧�̇� = −𝑙𝑟𝐶𝛼𝑟 + 𝑙𝑓𝐶𝑓𝛼𝑓  (8) 
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Combining equations (5), (6) to (7), (8) obtains the state equations as in the following: 

�̇�𝑦 =
−(𝐶𝑟 + 𝐶𝑓)

𝑚𝑣𝑥

𝑣𝑦 −
−(𝐶𝑟𝑙𝑟 + 𝑙𝑓𝐶𝑓)

𝑚𝑣𝑥

𝑟 −
𝐶𝑓

𝑚
𝛿  

(9) 

�̇� = −
(𝑙𝑟𝐶𝑟 − 𝑙𝑓𝐶𝑓)

𝐼𝑧𝑣𝑥

𝑣𝑦 −
(𝑙𝑟

2𝐶𝑟 − 𝑙𝑓
2𝐶𝑓)

𝐼𝑧𝑣𝑥

𝑣𝑦 +
𝑙𝑓𝐶𝑓

𝐼𝑧
𝛿 

(10) 

The previous two equations can be easily presented by state a space model matrix form as shown in 

equations (11) and (12) below:  

�̇� = 𝐴𝑥 + 𝐵𝑢 (11) 

𝑦 = 𝐶𝑥 (12) 

From equations (9) and (10), the matrices for state space presentation is shown in equations (13) and 

(14): 

 [
�̇�𝑦

�̇�
] = [

−(𝑐𝑓+𝑐𝑟)

m vx

−(𝑙𝑓 𝑐𝑓−𝑙𝑟 cr)

𝑚 𝑣𝑥
− 𝑣𝑥

−(lf  cf−lr cr)

𝑚 𝐼𝑧 

−(𝑙𝑓
2𝐶𝑓−𝑙𝑟

2 𝐶𝑟)

𝑚 𝐼𝑧

] [
𝑣𝑦

𝑟
] + [

𝐶𝑓

𝑚
−𝑎 𝐶𝑓

𝐼𝑧

] 𝛿 

(13) 

𝑦 = 𝐶 [
𝑣𝑦

𝑟
] 

(14) 

Where 𝐶 is a 2×2 identity matrix to demonstrate that both states of lateral velocity and yaw rate are 

available as well. 

 
Figure (1). Schematic diagram of bicycle model. 

3 FOUR TIRES CAR MODEL 

In this section, a proposed model of a car will be derived and modeled. Figure 2 illustrates the dynamic 

four-tire model. 
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Figure (2). Four tires car model. 

 

3.1  Steering Commands 

Since a four-wheeled car model includes both right and left steering, there will be inner and outer steering 

wheels as can be seen in Figure 3. If a vehicle turns left, for example, the right front wheel becomes the 

inner wheel and rotates more than the left front wheel, which is the outer wheel. This can, however, be 

accomplished easily by using the car's differential. Geometries should include inner and outer steering 

angles that are calculated and updated according to the input steering from the user or controller. 

 
Figure (3). Ackermann condition for steering system. 

 

The following equations represent the symbols in Ackermann condition for steering systems: 

𝑅1 = (𝑙𝑓 + 𝑙𝑟) 𝑐𝑜𝑡(𝛿) (15) 

𝑡𝑎𝑛(𝛿𝑖) =
𝑙𝑓 + 𝑙𝑟

𝑅1 −
𝑡𝑟
2

 
(16) 

𝛿𝑖 = 𝑡𝑎𝑛−1 (
𝑙𝑓 + 𝑙𝑟

(𝑙𝑓 + 𝑙𝑟) 𝑐𝑜𝑡(𝛿) +
𝑡𝑟
2

) 

(17) 

tan(𝛿𝑜) =
𝑙𝑓 + 𝑙𝑟

𝑅1 +
𝑡𝑟
2

 
(18) 

𝛿𝑜 = tan−1 (
𝑙𝑓 + 𝑙𝑟

(𝑙𝑓 + 𝑙𝑟) cot(𝛿) +
𝑡𝑟
2

) 

(19) 
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Inner and outer wheels are defined during turns depending on the steering angle of the user or controller 

as in equations (20) and (21): 

𝛿𝑓𝑟 = {
𝛿𝑖, 𝛿𝑖𝑛𝑝𝑢𝑡 < 0

𝛿𝑜, 𝛿𝑖𝑛𝑝𝑢𝑡 ≥ 0
 

(20) 

𝛿𝑓𝑙 = {
𝛿𝑜, 𝛿𝑖𝑛𝑝𝑢𝑡 < 0

𝛿𝑖, 𝛿𝑖𝑛𝑝𝑢𝑡 ≥ 0
 

(21) 

 

4 FOUR TIRES VEHICLE MODEL 

In this section, a proposed vehicle model will be derived and modeled. Figure 2 shows the dynamic four 

tire model. 

4.1  Slip angle calculations 

The four-tire model uses both longitudinal and lateral forces which means it maintains variable 

longitudinal velocity. Slip angles are calculated in equations (22), (23), (24) and (25): 

𝛼𝑓𝑟 =
𝑣𝑥 + 𝑟𝑙𝑓

𝑣𝑥 − 𝑟 
𝑡𝑓
2

− 𝛿𝑓𝑟  
(22) 

𝛼𝑓𝑙 =
vx + 𝑟𝑙𝑓

vx + r 
tf
2

− 𝛿𝑓𝑙  
(23) 

𝛼𝑟𝑟 =
vx − 𝑟𝑙𝑟

vx − r 
tr
2

 
(24) 

𝛼𝑟𝑙 =
vx − 𝑟𝑙𝑟

vx + r 
tr
2

 
(25) 

4.2  Force and moment equations 

The dynamic equations for the car model are expressed as three degrees of freedom (3 DOF). The lateral, 

longitudinal and yaw rate of the four-tire vehicle model is obtained from equations (26), (27) and (28): 

𝑚(�̇�𝑦 + 𝑣𝑥𝑟) = 𝐹𝑦,𝑓𝑟 + 𝐹𝑦,𝑓𝑙+ 𝐹𝑦,𝑟𝑟 + 𝐹𝑦,𝑟𝑙  (26) 

𝑚(�̇�𝑥 + 𝑣𝑦𝑟) = 𝐹𝑥,𝑓𝑟 + 𝐹𝑥,𝑓𝑙 + 𝐹𝑥,𝑟𝑟 + 𝐹𝑥,𝑟𝑙 − 𝐹𝑑  (27) 
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𝐼𝑧�̇� = 𝑙𝑓𝐹𝑦,𝑓𝑟 + 𝑙𝑓𝐹𝑦,𝑓𝑙 − 𝑙𝑟𝐹𝑦,𝑟𝑟 − 𝑙𝑟𝐹𝑦,𝑟𝑙 −
𝑡𝑓

2
𝐹𝑥,𝑓𝑟 +

𝑡𝑓

2
𝐹𝑥,𝑓𝑙 −

𝑡𝑓

2
𝐹𝑥,𝑟𝑟 +

𝑡𝑓

2
𝐹𝑥,𝑟𝑙  (28) 

where 𝐹𝑑  is aerodynamic drag force. The aerodynamic formula is as in equation (29): 

𝐹𝑑 =
1

2
𝜌𝐴𝑐𝑑𝑣𝑥

2 
(29) 

where 𝜌 is the air density 1.225 kg/m3, 𝐴 is the front area m2 and 𝑐𝑑  is the drag coefficient and it is equal 

to 0.12. 

4.3  Weight transfer model 

It is imperative to take into account the change of the normal forces on the vehicle tires as the vehicles 

weight transfers between them in order to calculate accurate friction usage during high acceleration as 

the vehicle operates close to the limits of handling. Assuming that the vehicle acts as a rigid body, the 

normal forces on the front and rear axles can be calculated by taking into account the longitudinal weight 

transfer due to ax as well as follow: 

𝐹𝑧𝑓 = 𝑚 (
𝑙𝑟𝑔 − ℎ𝐶𝐺  𝑎𝑥

𝐿
) 

(30) 

𝐹𝑧𝑟 = 𝑚 (
𝑙𝑓𝑔 + ℎ𝐶𝐺  𝑎𝑥

𝐿
) 

(31) 

where 𝑔 is the gravitational acceleration, ℎ𝐶𝐺  is the vertical distance from the center of gravity of the 

vehicle to the ground and 𝐿 is the wheelbase, which is the sum of 𝑙𝑓  and 𝑙𝑟 .  

The amount of lateral weight transfer on each axle is calculated as follows: 

∆𝐹𝑧𝑓 =
ℎ𝑓(𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟)

𝑑
 

(32) 

∆𝐹𝑧𝑟 =
ℎ𝑟(𝐹𝑦𝑓𝑟 + 𝐹𝑦𝑟𝑟)

𝑑
 

(33) 

where ℎ𝑓  and ℎ𝑟are the heights of the front and rear roll centers from the ground, respectively. The 

normal forces are used as inputs to the system during tire-force calculation to present the effect on the 

outputs. The normal force on each wheel due to weight transfer can be calculated as in the series of 

equations (34), (35), (36) and (37): 
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𝐹𝑧𝑓𝑟 =
𝐹𝑧𝑓

2
+ ∆𝐹𝑧𝑓  

(34) 

𝐹𝑧𝑓𝑙 =
𝐹𝑧𝑓

2
− ∆𝐹𝑧𝑓  

(35) 

𝐹𝑧𝑟𝑟 =
𝐹𝑧𝑟

2
+ ∆𝐹𝑧𝑟  

(36) 

𝐹𝑧𝑓𝑙 =
𝐹𝑧𝑟

2
− ∆𝐹𝑧𝑟  

(37) 

4.4  Couple brush tire model 

This paper uses a modified version of Pacejka’s combined slip brush tire model (Pacejka, 2005). For a 

given tire slip angle 𝛼 and a longitudinal slip 𝑘 as in equation (38), the weighted vector norm of the 

theoretical slip quantities f is defined as follows: 

𝑘 =
𝜔𝑟𝑒 − 𝑣𝑥

𝑣𝑥

 (38) 

𝑓 = √(𝐶𝑥𝜎𝑥)
2 + (𝐶𝛼𝜎𝑦)

2
 

(39) 

where 𝜎𝑥  and 𝜎𝑦  are the theoretical longitudinal and lateral slips respectively as in equations (40) and 

(41). 

𝜎𝑥 =
𝑘

1 + 𝑘
 

(40) 

𝜎𝑦 =
tan𝛼

1 + 𝑘
 (41) 

and 𝐶𝑥  and 𝐶𝛼  are the longitudinal and lateral tire stiffnesses, respectively. The magnitude of the total 

force on the tire 𝐹 is given as follows: 

𝐹 = {
𝑓 −

1

3𝜇𝐹𝑧

𝑓2 +
1

27𝜇2𝐹𝑧
2 𝑓3   , 𝑓 ≤ 3𝜇𝐹𝑧 

                     𝜇𝐹𝑧                        , 𝑓 > 3𝜇𝐹𝑧 

 
(42) 

The total force 𝐹 is projected into longitudinal and lateral components 𝐹𝑥  and 𝐹𝑦 according to the ratio 

of the slip quantities. 
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(𝐹𝑡𝑥, 𝐹𝑡𝑦) = (
𝐶𝑥𝜎𝑥

𝑓
𝐹,

−𝐶𝛼𝜎𝑦

𝑓
𝐹) 

(43) 

5 FRICTION ESTIMATION 

For friction estimation purposes it is assumed that tire forces and slip angles are measured from a “real” 

vehicle. It is assumed that tire force sensors are available. Tire force sensors that are economical feasible 

are currently under development (Hayward et al., 1999). Slip angles can also be measured using GPS 

signals (Cohen et al., 1994; Acosta et al., 2019). Figure 4 shows the estimator process diagram. 

 
Figure (4). Estimator process diagram. 

The cornering stiffness coefficients are estimated based on the linear equation as follows: 

 𝐹(𝑡) = 𝐶(𝑡) 𝛼(𝑡) (44) 

This paper uses recursive least square estimation using the forgetting factor method which can be 

explained in the following series of equations (45) to (48): 

  �̂�(𝑡) = �̂�(𝑡 − 1) + 𝐾(𝑡)(𝐹(𝑡) − �̂�(𝑡)) (45) 

𝐶(𝑡) is the cornering stiffness estimated at time 𝑡. 𝐹(𝑡) is the observed lateral force at time 𝑡, and �̂�(𝑡) 

is the prediction of 𝐹(𝑡) based on observations up to time 𝑡 − 1. The gain, 𝐾(𝑡) in (44), determines how 

much the current prediction error of lateral force 𝐹(𝑡) − �̂�(𝑡) affects the update of the estimated 𝐶. 

  𝐾(𝑡) = 𝑄(𝑡) 𝛼(𝑡) (46) 

where 𝛼(𝑡) is the regression computed passed on previous values of measured lateral force and stiffness. 

𝑄(𝑡) can be obtained by minimizing (46) at time 𝑡. 
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 𝑄(𝑡) =
𝑃(𝑡−1)

𝜆+𝛼(𝑡)𝑇 𝑃(𝑡−1) 𝛼(𝑡)
 (47) 

Using equation (48), the software computes a positive-definite matrix where the residuals (difference 

between the estimated and measured outputs) are white noise. 

 𝑃(𝑡) =
1

𝜆
(𝑃(𝑡 − 1) −

𝑃(𝑡−1) 𝛼(𝑡) 𝛼(𝑡)𝑇𝑃(𝑡−1) 

𝜆+𝛼(𝑡)𝑇 𝑃(𝑡−1) 𝛼(𝑡)
) (48) 

Estimated cornering stiffness depends on the car's steering input variance. Figure 5. shows how estimated 

stiffness, lateral acceleration and yaw rate are affected by random step steering input size. Steering inputs 

1, 2 and 3 have variances of 3, 5 and 7 degrees, respectively. The car parameters used for simulation are 

listed in Table 1. 

 
Figure (5). Cornering stiffness estimates for different steering input sizes. 

 

Table 1. Real car parameters 
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Parameter Symbol Value Unit 

Vehicle mass m 1200  Kg 

Yaw moment of inertia Iz 1500 kg-m2 

Front axle-CG distance lf 1 M 

Rear axle-CG distance lr 1.2 M 

Left-right wheels distance tr,tf 1.2 M 

ground to CG distance hCG 0.9 M 

Wheel axles to CG distance hf ,hr 0.3 M 

Car width t 1.2 M 

Wheel base rim radius re 0.3 M 

Front area A 2  m2 

Drag coefficient cd 0.12 ---- 

Longitudinal Cx 50000  N/rad 

Lateral Cα 50000 N/rad 

6 MPC CONTROLLER DESIGN 

MPC controller deals with a feedback algorithm that optimizes each time step to get the optimal solution. 

Figure 6 shows a schematic diagram of MPC controller. 

 

Figure (6). Schematic diagram of MPC controller 

 

The constrained optimization problem can be minimized using the following quadratic programming 

(QP) method as in equation (49): 

 𝑋𝑇𝐻𝑥 − 𝑔𝑇𝑥;  𝐸𝑥 < 𝑏 (49) 

where 𝑥 =  (𝑘); 𝐻 means symmetric matrix, 𝑔 represents the gradient vector. 𝐸 and 𝑏 are the 

constraint matrices used in the QP. The first element of the optimal sequence 𝛥𝑢(𝑘) is to be selected as 

the solution of the control system. 
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 ∆𝑢(𝑘) =  [1,0, … ,0] ∙ ∆𝑢(𝑘);  u(k)= ∑ ∆u(i)k
i=1  (50) 

In this desert, the input to the real car’s model is presented as the steering input (𝛿𝑐) which depends on 

the additional steering input 𝛿𝐴  and the driver steering input 𝛿𝑑  can be presented as in the following 

equation (51): 

 𝛿𝑐 = 𝛿𝐴 + 𝛿𝑑  (51) 

6.1  Adaptive MPC for yaw rate control 

Since the plant is assumed to have unknown tire parameters, an AMPC is used based on linearization. 

This is such that a linear model is computed as operating conditions change. At each time step, the 

internal plant simulation is updated by the AMPC controller with a linear bicycle model. Here, cornering 

stiffness and longitudinal velocity are the variables to be updated. In addition, the steering angle from 

AMPC states and yaw rate. Figure 6 shows a diagram of the AMPC control process based on tire stiffness 

estimation. 

 
Figure (7). AMPC with friction estimation control process 

The plant model used as the basis for adaptive MPC must be an LTI (linear time invariant) discrete-time, 

state-space model. In adaptive MPC, the nominal operating point should be updated to be consistent 

with the updated plant model as well. The plant model in terms of deviations from the nominal condition 

structure is presented in equation (52): 

  𝑥(𝑘 + 1) = �̅� + 𝐴(𝑥(𝑘) − �̅�) + 𝐵(𝑢(𝑘) − �̅�) + ∆𝑥̅̅̅̅  (52) 

 𝑦(𝑘) = �̅� + 𝐶(𝑥(𝑘) − �̅�) (53) 
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where 𝑘 is the discrete time step, �̅� is the nominal state has the parameters of 𝐶𝑓  and 𝐶𝑟  to be updated, 

∆𝑥̅̅̅̅  is the increment of nominal state, �̅� is nominal input matrix and �̅� is the nominal output matrix. 

 ∆𝑥̅̅̅̅ = 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡)-𝑥 (54) 

6.2  Prediction equation design 

The plant model in terms of deviations from the nominal condition structure is described as in the 

equation (52) which a discrete time model for the state space model shown in (11) and (12): 

  𝑥(𝑘 + 1) = 𝐴𝑐𝑥(𝑘) + 𝐵𝑐𝑢𝑢(𝑘) + 𝐵𝑐𝑑𝑑(𝑘) (55) 

 𝑦(𝑘) = 𝐶𝑥(𝑘) (56) 

The static error of the system can be eliminated so that the discrete system model as can be written as an 

incremental type: 

  ∆𝑥(𝑘 + 1) = 𝐴𝑐∆𝑥(𝑘) + 𝐵𝑐𝑢∆𝑢(𝑘) + 𝐵𝑐𝑑∆𝑑(𝑘) (57) 

 𝑦(𝑘) = 𝐶∆𝑥(𝑘) + 𝑦(𝑘 − 1) (58) 

According to the control horizon M and prediction horizon M, the solution for each discrete time step can 

be written as in the sequence of equations from (59) to (62). The matric x(k) is to be used as the starting 

solution of the prediction issue as in (59): 

 ∆𝑥(𝑘 + 1|𝑘) = 𝐴𝑐∆�̂�(𝑘) + 𝐵𝑐𝑢𝑢(𝑘) + 𝐵𝑐𝑑𝑑(𝑘) (59) 

 (𝑘 + 2|𝑘) = 𝐴𝑐∆�̂�(𝑘) + 𝐵𝑐𝑢𝑢(𝑘 + 1) + 𝐵𝑐𝑑𝑑(𝑘 + 1) = 𝐴𝑐
2∆�̂�(𝑘) +

𝐴𝑐𝐵𝑐𝑢𝑢(𝑘) + 𝐵𝑐𝑢𝑑(𝑘 + 1) + 𝐴𝑐𝐵𝑐𝑑∆𝑑(𝑘) 
(60) 

 ∆𝑥(𝑘 + 𝑀|𝑘) = 𝐴𝑐
𝑀∆�̂�(𝑘) + 𝐴𝑐

𝑀−1𝐵𝑐𝑢∆𝑢(𝑘) +   𝐴𝑐
𝑀−2𝐵𝑐𝑢∆𝑢(𝑘 +

1)    + ⋯+ 𝐵𝑐𝑢∆𝑢(𝑘 + 𝑀 − 1) + 𝐴𝑐
𝑀−1𝐵𝑐𝑑∆𝑑(𝑘) 

(61) 

 ∆𝑥(𝑘 + 𝑃|𝑘) = 𝐴𝑐
𝑃∆�̂�(𝑘) + 𝐴𝑐

𝑃−1𝐵𝑐𝑢∆𝑢(𝑘) +   𝐴𝑐
𝑃−2𝐵𝑐𝑢∆𝑢(𝑘 + 1)    +

⋯+ 𝐵𝑐𝑢∆𝑢(𝑘 + 𝑃 − 1) + 𝐴𝑐
𝑃−1𝐵𝑐𝑑∆𝑑(𝑘) 

(62) 

As a result, according to the basis of the predictive states, the predictive outputs at each time step (𝑘) 

are given as (63): 

  
𝑦(𝑘 + 1|𝑘) = 𝐶𝑐𝐴𝑐∆�̂�(𝑘) + 𝐶𝑐𝐵𝑐𝑢𝑢(𝑘) + 𝐶𝑐𝐵𝑐𝑑∆𝑑(𝑘) + �̂�(𝑘)                            

(63) 
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𝑦(𝑘 + 2|𝑘) = (𝐶𝑐𝐴𝑐
2 + 𝐶𝑐𝐴𝑐)∆�̂�(𝑘) + (𝐶𝑐𝐴𝑐𝐵𝑐𝑢 + 𝐶𝑐𝐵𝑐𝑢)𝑢(𝑘)

+ 𝐶𝑐𝐵𝑐𝑢∆𝑢(𝑘 + 1) + (𝐶𝑐𝐴𝑐𝐵𝑐𝑑 + 𝐶𝑐𝐵𝑐𝑑)∆𝑑(𝑘) + �̂�(𝑘) 

 𝑦(𝑘 + 𝑃|𝑘) = ∑ 𝐶𝑐𝐴𝑐
𝑖 ∆�̂�(𝑘)𝑃

𝑖=1 + ∑ 𝐶𝑐𝐴𝑐
𝑖−1𝐵𝑐𝑢∆𝑢(𝑘)𝑃

𝑖=1 +

∑ 𝐶𝑐𝐴𝑐
𝑖−1𝐵𝑐𝑢∆𝑢(𝑘)𝑃−1

𝑖=1 + ⋯ + ∑ 𝐶𝑐𝐴𝑐
𝑖−1𝐵𝑐𝑢∆𝑢(𝑘 + 𝑀 − 1)𝑃−𝑀+1

𝑖=1 +

∑ 𝐶𝑐𝐴𝑐
𝑖−1𝐵𝑐𝑑∆𝑑(𝑘) + �̂�(𝑘)𝑃

𝑖=1  

(64) 

The sequence for the control input rate of change ∆U(k) and prediction control output 𝑌(𝑘) are defined 

in (62) and (66) respectively: 

 ∆U(k)= [

∆𝑢(𝑘|𝑘)
∆𝑢(𝑘 + 1|𝑘)

⋮
∆𝑢(𝑘 + 𝑀 − 1|𝑘)

]

𝑀×1

 

(65) 

Y(k+1)= [

𝑦(𝑘 + 1|𝑘)
𝑦(𝑘 + 2|𝑘)

⋮
𝑦(𝑘 + 𝑃|𝑘)

]

𝑃×1

 

(66) 

The value of 𝛥𝑢(𝑘) is to be set zero beyond the control horizon. Given that the driver’s intention is 

constantly changing, the reference yaw rate in the prediction horizon is calculated according to the 

driver’s intention. This is to obtain improved control performance. 𝑟𝑟𝑒𝑓(𝑘) is the reference yaw rate 

that can be defined in the equations (67) to (69):  

 

 𝑟𝑟𝑒𝑓(𝑘 + 1) = 𝑟𝑟𝑒𝑓(𝑘) + 𝜖(𝑟𝑟𝑒𝑓(𝑘) − 𝑟𝑟𝑒𝑓(𝑘 − 1)) (67) 

 𝑟𝑟𝑒𝑓(𝑘 + 2) = 𝑟𝑟𝑒𝑓(𝑘 + 1) + 𝜖 (𝑟𝑟𝑒𝑓(𝑘) − 𝑟𝑟𝑒𝑓(𝑘 − 1)) (68) 

⋮  

 𝑟𝑟𝑒𝑓(𝑘 + 𝑃) = 𝑟𝑟𝑒𝑓(𝑘 + 𝑃 − 1) + 𝜖 (𝑟𝑟𝑒𝑓(𝑘) − 𝑟𝑟𝑒𝑓(𝑘 − 1)) (69) 

 

where 𝜖  is the weight factor that affects the tracking performance of the real car’s model. 𝑎𝑦 𝑟𝑒𝑓(𝑘) is 

the reference yaw rate that can be defined as in equations (70) to (72): 

 

 𝑎𝑦 𝑟𝑒𝑓(𝑘 + 1) = 𝑎𝑦 𝑟𝑒𝑓(𝑘) + 𝜖(𝑎𝑦 𝑟𝑒𝑓(𝑘) − 𝑎𝑦 𝑟𝑒𝑓(𝑘 − 1)) (70) 
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 𝑎𝑦 𝑟𝑒𝑓(𝑘 + 2) = 𝑎𝑦 𝑟𝑒𝑓(𝑘 + 1) + 𝜖 (𝑎𝑦 𝑟𝑒𝑓(𝑘) − 𝑎𝑦 𝑟𝑒𝑓(𝑘 − 1)) (71) 

⋮  

𝑎𝑦 𝑟𝑒𝑓(𝑘 + 𝑃) = 𝑎𝑦 𝑟𝑒𝑓(𝑘 + 𝑃 − 1) + 𝜖 (𝑎𝑦 𝑟𝑒𝑓(𝑘) − 𝑎𝑦 𝑟𝑒𝑓(𝑘 − 1)) (72) 

 

The input reference sequence 𝑅(𝑘 + 1) is defined as follows: 

 

 

 𝑅(𝑘 + 1) =

[
 
 
 
𝑟𝑟𝑒𝑓(𝑘 + 1)

𝑟𝑟𝑒𝑓(𝑘 + 2)

⋮
𝑟𝑟𝑒𝑓(𝑘 + 𝑃)

𝑎𝑦 𝑟𝑒𝑓(𝑘 + 1)

𝑎𝑦 𝑟𝑒𝑓(𝑘 + 2)

⋮
𝑎𝑦 𝑟𝑒𝑓(𝑘 + 𝑃)]

 
 
 

𝑃×2

 

(73) 

 

6.3  Cost function equations 

Performing optimized control problems requires a cost function design for the tracking problem. In this 

research the main priority is to track the desired rate of yaw rate which defines the first cost function part 

(𝐽1). Then the secondary aim is to reduce the rate of change of controlled steering input which defines 

the second cost function part (𝐽2). The cost functions are presented as follows: 

 𝐽1 = |𝑌(𝑘 + 1) − 𝑅(𝑘 + 1)|𝑄2
2 = ∑ [𝑟(𝑘 + 𝑖|𝑘) − 𝑟𝑟𝑒𝑓(𝑘 + 𝑖)2. 𝑄1]

𝑃
𝑖=1  (74) 

 𝐽2 = |∆𝑈(𝑘)|𝑄2
2 = ∑ [∆𝛿𝑐(𝑘 + 𝑖 − 1|𝑖)2𝑄2]

𝑀−1
𝑖=1  (75) 

where 𝑄1 is the weight factor responsible for tracking performance and 𝑄2 is responsible for adjusting 

control inputs. The total cost function for the process of choosing the optimal solution (𝐽) can be written 

as: 

 𝐽 = 𝐽1 + 𝐽2 (76) 

 J =||Y(k+1)R(k+1)||Q1

2
+||∆U(k)||Q2

2
 (77) 

The controller deals with hard constraints which are the limits of steering input (𝛿𝑑) and the rate of 

change of steering inputs (∆𝛿𝑑). These can be written as follows: 
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 −𝛿𝑐 𝑚𝑖𝑛 ≤ 𝛿𝑐(𝑘 + 𝑖|𝑘) ≤ −𝛿𝑐 𝑚𝑖𝑛  (78) 

 −∆𝛿𝑐 𝑚𝑖𝑛 ≤ ∆𝛿𝑐(𝑘 + 𝑖|𝑘) ≤ −𝛿𝑐 𝑚𝑖𝑛  (79) 

where 𝐼 =  1, 2, . . . , 𝑀 − 1. 

The specified design parameters used to control the vehicle using AMPC are tabulated as in Table 2: 

Table (2). Real car parameters. 

Parameter Symbol Value Unit 
MPC prediction horizon P 20  ---- 

MPC sampling time Ts 0.001  Sec 

MPC control horizon M 4 ---- 

Minimum steering input constrain δmin -π/6 Rad 

Maximum steering input constrain δmax π/6 Rad 

Minimum steering input rate constrain �̇�min -15 °/sec 

Maximum steering input rate constrain �̇�max 15 °/sec 

Minimum output yaw rate constrains rmin -0.3 rad/sec 

Maximum output yaw rate constrains rmax 0.3 rad/sec 

Minimum output lateral acceleration rmin -4 rad/sec 

Maximum output lateral acceleration rmax 4 rad/sec 

Weight of inputs Q1 0 ---- 

Weight of rate of inputs Q2 0.44 ---- 

Weight of outputs  1 ---- 

7 RESULTS AND DISCUSSION 

In this section, a comparison of three different vehicles will be conducted through different steering input 

tests to show the effectiveness of the AMPC controllers and used estimator to observe the yaw rate, lateral 

acceleration and estimated cornering stiffness and how are they affected. The first test is a sinewave 

saturated at the absolute value of 3 degrees, the second test is a step steering input with a slope of 10 

degrees/sec and saturated at 3 degrees. Both first and second tests are run for 6 seconds. The third test 

uses a random 3 degrees steering input variance and run for 8 seconds to show the improvement of 

steering oscillations while estimating correct cornering stiffness of real car model corresponding to the 

reference inputs from ideal car’s model. Each simulation works with 21 m/s. 

For the first and second tests, Figures 8 and 13 illustrate the steering inputs for open loop. This is the same 

for the ideal vehicle and uncontrolled real vehicle, and the steering of controlled vehicles. It is shown that 

the controlled vehicle with an estimator has a steering input closer to the open loop signal than the 

controlled vehicle without an estimator. In Figures 9 and 14, the uncontrolled car reached a very high 

yaw rate, suggesting that the vehicle has become unstable and oversteering. Figures 10 and 15 illustrate 

the lateral acceleration response. Clearly, the controlled vehicle with cornering stiffness estimation has a 
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lower yaw rate and lateral acceleration than the vehicle without an estimator, while the uncontrolled 

vehicle exhibits a high lateral acceleration. For front and rear tires, figures 11 and 16 illustrate the 

estimated cornering stiffness. Within three seconds, the cornering stiffness reached the correct estimated 

value, demonstrating the advantages of the controller and estimator. In Figures 12 and 17, the vehicle's 

XY trajectory is shown. It is demonstrated that the car equipped with the estimator follows ideal XY baths 

better than other vehicles. 

 
Figure (8). Steering angles in test 1 

 

 
Figure (9). Yaw rate response in test 1 
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Figure (10). Lateral acceleration response in test 1 

 

 
Figure (11).Estimated cornering stiffness in test 1 

 

 
Figure (12). XY trajectory path in test 1 
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Figure (13) Steering angles in test 2 

 

 
Figure (14) Yaw rate response in test 2 

 

 
Figure (15).Estimated cornering stiffness in test 2 
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Figure (16). XY trajectory path in test 2 

Increasing steering input variance results in reduced cornering stiff nesses, as shown in Figure 6 of Section 

5. As a result of high steering inputs, tire forces are expected to saturate. Therefore, at higher slip angles, 

the tire produces smaller force increases per increase in slip angle, which results in lower tire stiffness. 

In Figure 18, the steering angles from the open loop and the AMPC controller are shown, showing that 

the AMPC steering output oscillates during the first three seconds of the simulation. Conversely, the 

AMPC steering outputs are much smoother after second number three. This phenomenon occurs 

because the model used by the AMPC is not accurate at the start of the simulation, however after 

approximately three seconds, the estimator reaches a steady state of the correct cornering stiffness values 

that affect the real car model to follow the desired reference signals from the reference ideal model. As a 

result, the AMPC makes incorrect predictions when optimizing steering output, resulting in oscillations 

in steering control. By using the estimated tire cornering stiffness values, the AMPC model updates the 

tire stiffness as the simulation progresses. In this way, the AMPC is able to perform better. 

Both the front and rear tires were initially designed with cornering stiffnesses of 80 kN/rad and 100 

kN/rad, respectively. For the first, second, and third steering inputs, the estimator determined the front 

tire stiffness to be 70 kN/rad, 68 kN/rad, and 69 kN/rad, respectively. Also, the rear tire stiffness should 

be set at 74 kN/rad, 78 kN/rad, and 77 kN/rad for the first, second, and third steering inputs, respectively. 

On the real car plant model, the final values for both front and rear estimated cornering stiffness were 

almost the same, demonstrating the performance of both AMPC controller and estimator. 
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Figure (17). Steering input from user and AMPC 

 

 
Figure (18). Estimated cornering stiffnesses for front and rear tires 

 

7.1  Comparison among technologies 

A comparison of the three used vehicles compared to the ideal vehicle is presented in Table 3 to 

demonstrate what technology should be used in vehicles to ensure stability and lateral comfort. 

Table (3) Comparison between three vehicles corresponding to the ideal one. 

 Uncontrolled real car Controlled real car 
Controlled real car with 

estimation 

Steering angle 
Same ideal 

(open loop) 

Higher,  

with oscillations 

Very closed, without 

oscillations 

Yaw rate 
Not following 

(unstable) 

Closer 

(stable) 

Almost same as ideal 

(stable) 

Lateral acceleration 

Not following ideal 

response  

(uncomfortable) 

Closer to the ideal 

response (comfortable) 

Almost same as ideal 

response 

(comfortable) 
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Estimated cornering 

stiffness 
---- ---- 

3 seconds to estimate 

correct values 

Following ideal car’s XY 

trajectory 

Not following 

ideal path 
closer to the ideal XY path Almost ideal same XY path 

According to the results of the previous table, the controlled vehicle with cornering stiffness estimator 

was the most stable and had the best lateral comfort with minimal oscillations of the steering angle from 

the controller. Additionally, it has at most the same XY trajectory path as the ideal vehicle for autonomous 

driving, so the results in this study indicate that controlled vehicles with estimators are the preferred 

technology. 

7.2  Comparison among previous studies 

Several papers in the field of vehicle dynamics and control have employed linear model predictive 

controllers (LMPCs) for improving the handling limits of yaw rate by actively steering the front of the 

vehicle (Li et al., 2020). Other papers used a long short-term memory network for cornering stiffness 

estimation, thereby providing significant information to a vehicle's direct yaw robust controller system in 

order to construct a lateral dynamic model. For enhancing performance and stability, other researchers 

have applied the Levenberg Marquardt approach (Pereira et al., 2021). In Table 4, the effectiveness of this 

research is compared with that of recent previous studies in terms of the development of an effective 

controller and estimation for stabilizing the lateral performance of ground vehicles. 

Table (4) Comparison with previous studies 

Comparisons 

Approach / Study 

Current Study Li et al. 

(2020) 

Lian et al. 

(2023) 

Pereira et al. 

(2021) 

Vehicles plant 

model 

Parameters 

Number of tires  2 tires 4 tires 6 tires 4 tires 

Mass and yaw 

moment of inertia 

1240 kg and 

2031.4 
2kg.m 

1159 kg and 
2617 kg.m 

15770 kg and 
263595 kg.m 

1200 kg and 1500 
2kg.m 

Front and real 

cornering stiffness 

52618 and 

52185 N/rad 

---- 

---- 

400000, 

300000 and 

200000 

N/rad 

30000 and 40000 

N/rad 

Longitudinal 

velocity 
22.2 m/s 25 m/s 21.9 m/s 21 m/s 

Control system 

Type of controller LAMPC 
DYC robust 

controller 
---- AMPC 

Speed of the control 

system 

implemented by 

rising time. 

0.2 sec 0.7 sec ---- 0.1 sec 
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Inputs / Outputs 

of controller 

yaw rate / 

Front 

steering 

angle 

yaw rate and 

sideslip 

angle/ front 

steering angle 

---- 

yaw rate, lateral 

acceleration / Front 

steering angle 

Controlled yaw rate  

limits 
4 rad/ sec 2.5 rad/sec ---- 0.4 rad / sec 

Controlled lateral 

acceleration limits 
---- ---- ---- 24 m/sec 

Estimation 

Estimators used for 

tire stiffness 
 ---- 

Long short-

term memory 

network 

Levenberg 

Marquardt 
Least square recursive  

Time required to 

reach correct 

cornering 

stiffnesses 

---- 0.1 sec 8 sec 3 sec 

8 CONCLUSIONS 

The present study examined how AMPC controllers can be used to control the yaw rate and lateral 

acceleration of a nonlinear car's model using active front steering angle in conjunction with the prediction 

of cornering stiffness. The nonlinear plant model was linearized using an AMPC controller, and estimated 

cornering stiffnesses were updated into a linear ideal model based on a bicycle model. Models of real and 

ideal vehicles have been described and simulated using MATLAB software. The proposed yaw rate and 

lateral acceleration control system was tested in three separate ways in order to determine the optimal 

yaw rate, lateral acceleration, and XY trajectory. Based on the results of the study, AMPC performance is 

enhanced when used in conjunction with tire stiffness estimation. In addition, the estimator took 

approximately three seconds to reach the correct values for both front and rear tire stiffnesses. As a result, 

the controller was able to track the desired state responses even within a short period of time, about 0.1 

seconds. A model of the proposed system could be developed using artificial intelligence (AI) for further 

research and development on the effects of the environment and the car as a result of input road 

maneuvers. 

 

 

 

 

 

 

 



Adaptive Model Predictive Control of Yaw Rate and Lateral Acceleration for an Active Steering Vehicle Based on 

Tire Stiffness Estimation 

 

78 

 

9 REFERENCES: 

Wang, Y., Hu, J., Wang, F., Dong, H., Yan, Y., Ren, Y., Zhou, C., & Yin, G. (2022). Tire Road Friction 

Coefficient Estimation: Review and Research Perspectives. Chinese Journal of Mechanical 

Engineering, 35(2), 6. 

Chen, G., Zhao, X., Gao, Z., & Hua, M. (2023). Dynamic drifting control for general path tracking of 

autonomous vehicles. IEEE Transactions on Intelligent Vehicles, 8(3), 2527-2537. 

local model and Kalman filter -Yahagi, S., & Suzuki, M. (2023). Intelligent PI control based on the ultra

rate control. SICE Journal of Control, Measurement, and System Integration. -for vehicle yaw

47.-(1), 38n, 16IntegratioSICE Journal of Control, Measurement, and System  

Mietzner, J., Lampe, L., & Schober, R. (2009). Distributed transmit power allocation for multihop 

cognitive-radio systems. IEEE Transactions on Wireless Communications, 8(10), 5187-5201. 

Blagojevic, V., & Ivanis, P. (2012). Ergodic capacity for TAS/MRC spectrum sharing cognitive radio. 

IEEE Communications Letters, 16(3), 321-323. https://arab-scholars.com/5bb1b1. 

Yurtsever, E., Lambert, J., Carballo, A., & Takeda, K. (2020). A survey of autonomous driving: Common 

practices and emerging technologies. IEEE access, 8, 58443-58469.  

Eskandarian, A., Wu, C., & Sun, C. (2019). Research advances and challenges of autonomous and 

connected ground vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(2), 

683-711. 

Davis, S., & Boundy, R. (2021). Transportation energy data book: Edition 39. Oak Ridge National 

Lab.(ORNL), Oak Ridge, TN (United States). 

Zhang, G., Wang, X., Li, L., & Zhao, X. (2023). Tire-Road Friction Estimation for Four-Wheel 

Independent Steering and Driving EVs Using Improved CKF and FNN. IEEE Transactions on 

Transportation Electrification, 10(1), 823-834. 

Xu, N., Zhou, J., Barbosa Henrique Groenner, B., Askari, H., & Khajepour, A. (2023). A Soft Sensor for 

Estimating Tire Cornering Properties for Intelligent Tires. IEEE Transactions on Systems, 

Man, and Cybernetics: Systems, 53(10), 6056-6066. 

Hajiloo, R., Abroshan, M., Khajepour, A., Kasaiezadeh, A., & Chen, S. (2020). Integrated steering and 

differential braking for emergency collision avoidance in autonomous vehicles. IEEE 

Transactions on Intelligent Transportation Systems, 22(5), 3167-3178. 

Gao, H., Kan, Z., & Li, K. (2021). Robust lateral trajectory following control of unmanned vehicle based 

on model predictive control. IEEE/ASME Transactions on Mechatronics, 27(3), 1278-1287. 

De Bernardis, M., Rini, G., Bottiglione, F., Hartavi, A., & Sorniotti, A. (2023). On nonlinear model 

predictive direct yaw moment control for trailer sway mitigation. Vehicle system dynamics, 

61(2), 445-471. 

Chen, Z., Xiong, R., Cai, X., Wang, Z., & Yang, R. (2023). Regenerative braking control strategy for 

distributed drive electric vehicles based on slope and mass co-estimation. IEEE Transactions 

on Intelligent Transportation Systems, 24(12), 14610-14619. 



  Palestine Technical University Research Journal, 2024, 12(2), 54-79 

79 
 

Shakouri, P., & Ordys, A. (2014). Nonlinear Model Predictive Control approach in design of Adaptive 

Cruise Control with automated switching to cruise control. Control Engineering Practice, 26, 

160-177. 

Nilsson, J., Silvlin, J., Brannstrom, M., Coelingh, E., & Fredriksson, J. (2016). If, When, and How to 

Perform Lane Change Maneuvers on Highways. IEEE Intelligent Transportation Systems 

Magazine, 8(4), 68-78. 

Li, X., Sun, Z., Cao, D., He, Z., & Zhu, Q. (2015). Real-time trajectory planning for autonomous urban 

driving: Framework, algorithms, and verifications. IEEE/ASME Transactions on 

mechatronics, 21(2), 740-753. 

Wang, N., Lv, S., Er, M., & Chen, W. (2016). Fast and accurate trajectory tracking control of an 

autonomous surface vehicle with unmodeled dynamics and disturbances. IEEE Transactions 

on Intelligent Vehicles, 1(3), 230-243. 

Daily, R., & Bevly, D. (2004). The use of GPS for vehicle stability control systems. IEEE transactions on 

industrial electronics, 51(2), 270-277. 

Nishio, A., Tozu, K., Yamaguchi, H., Asano, K., & Amano, Y. (2001). Development of vehicle stability 

control system based on vehicle sideslip angle estimation. SAE transactions, 110(6), 115-

122. 

Zhang, B., Du, H., Lam, J., Zhang, N., & Li, W. (2016). A Novel Observer Design for Simultaneous 

Estimation of Vehicle Steering Angle and Sideslip Angle. IEEE Transactions on Industrial 

Electronics, 36(7), 4357-4366. 

Pacejka, H. (2005). Tire and vehicle dynamics (2nd ed.). Elsevier. 

Hayward, R., Marchick, A., & Powell, J. (1999). Two antenna GPS attitude and integer ambiguity 

resolution for aircraft applications. Proceedings of the 1999 National Technical Meeting of 

The Institute of Navigation, 155-164. 

Cohen, C., Parkinson, B., & McNally, B. (1994). Flight tests of attitude determination using GPS 

compared against an inertial navigation unit. Navigation, 41(1), 83-97. 

Acosta, M., Kanarachos, S., & Blundell, M. (2019). Virtual tyre force sensors: An overview of tyre 

model-based and tyre model-less state estimation techniques. Proceedings of the Institution 

of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(14), 1883-1930. 

Li, S., Wang, G., Zhang, B., Yu, Z., & Cui, G. (2020). Vehicle yaw stability control at the handling limits 

based on model predictive control. International Journal of Automotive Technology, 21, 

361-370. 

Lian, Y., Feng, W., Liu, S., & Nie, Z. (2023). A Road Adhesion Coefficient-Tire Cornering Stiffness 

Normalization Method Combining a Fractional-Order Multi-Variable Grey Model with a 

LSTM Network and Vehicle Direct Yaw-Moment Robust Control. Frontiers in 

Neurorobotics, 17, 1229808. 

Pereira, C., da Costa Neto, R., & Loiola, B. (2021). Cornering stiffness estimation using Levenberg–

Marquardt approach. Inverse Problems in Science and Engineering, 29(12), 2207-2238. 

 


